Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 660: 124251, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38797253

ABSTRACT

This research shows the detailed comparison of Raman and near-infrared (NIR) spectroscopy as Process Analytical Technology tools for the real-time monitoring of a protein purification process. A comprehensive investigation of the application and model development of Raman and NIR spectroscopy was carried out for the real-time monitoring of a process-related impurity, imidazole, during the tangential flow filtration of Receptor-Binding Domain (RBD) of the SARS-CoV-2 Spike protein. The fast development of Raman and NIR spectroscopy-based calibration models was achieved using offline calibration data, resulting in low calibration and cross-validation errors. Raman model had an RMSEC of 1.53 mM, and an RMSECV of 1.78 mM, and the NIR model had an RMSEC of 1.87 mM and an RMSECV of 2.97 mM. Furthermore, Raman models had good robustness when applied in an inline measurement system, but on the contrary NIR spectroscopy was sensitive to the changes in the measurement environment. By utilizing the developed models, inline Raman and NIR spectroscopy were successfully applied for the real-time monitoring of a process-related impurity during the membrane filtration of a recombinant protein. The results enhance the importance of implementing real-time monitoring approaches for the broader field of diagnostic and therapeutic protein purification and underscore its potential to revolutionize the rapid development of biological products.


Subject(s)
COVID-19 , Filtration , Recombinant Proteins , SARS-CoV-2 , Spectroscopy, Near-Infrared , Spectrum Analysis, Raman , Spike Glycoprotein, Coronavirus , Spectrum Analysis, Raman/methods , Spectroscopy, Near-Infrared/methods , Filtration/methods , Recombinant Proteins/isolation & purification , COVID-19/diagnosis , Humans , Calibration , Membranes, Artificial , Imidazoles/chemistry
2.
Biomedicines ; 11(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38137414

ABSTRACT

We have developed a simple, rapid, high-throughput RBD-based ELISA to assess the humoral immunity against emerging SARS-CoV-2 virus variants. The cDNAs of the His-tagged RBD proteins of the virus variants were stably engineered into HEK cells secreting the protein into the supernatant, and RBD purification was performed by Ni-chromatography and buffer exchange by membrane filtration. The simplified assay uses single dilutions of sera from finger-pricked native blood samples, purified RBD in 96-well plates, and a chromogenic dye for development. The results of this RBD-ELISA were confirmed to correlate with those of a commercial immunoassay measuring antibodies against the Wuhan strain, as well as direct virus neutralization assays assessing the cellular effects of the Wuhan and the Omicron (BA.5) variants. Here, we document the applicability of this ELISA to assess the variant-specific humoral immunity in vaccinated and convalescent patients, as well as to follow the time course of selective vaccination response. This simple and rapid assay, easily modified to detect humoral immunity against emerging SARS-CoV-2 virus variants, may help to assess the level of antiviral protection after vaccination or infection.

3.
Food Technol Biotechnol ; 61(3): 339-349, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38022883

ABSTRACT

Research background: Protein A affinity chromatography is a well-established method currently used in the pharmaceutical industry. However, the high costs usually associated with chromatographic separation of protein A and the difficulties in continuous operation make the investigation of alternative purification methods very important. Experimental approach: In this study, extraction/back-extraction and precipitation/dissolution methods were developed and optimised. They were compared with protein A and cation exchange chromatography separations in terms of yield of monoclonal antibody (mAb) and amount of residual impurities, such as DNA and host cell proteins, and amount of mAb aggregates. For a comprehensive comparison of the different methods, experiments were carried out with the same cell-free fermentation broth containing adalimumab. Results and conclusions: Protein A and cation exchange chromatographic separations resulted in high yield and purity of adalimumab. The precipitation-based process resulted in high yield but with lower purity. The extraction-based purification resulted in low yield and purity. Thus, the precipitation-based method proved to be more promising than the extraction-based method for direct purification of adalimumab from harvested cell culture fluid. Novelty and scientific contribution: Although alternative purification methods may offer the advantages of simplicity and low-cost operation, further significant improvements are required to compete with the performance of chromatographic separations of adalimumab from true fermentation broth.

4.
Pharmaceutics ; 15(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36986716

ABSTRACT

The aim of this study was to develop antisense oligonucleotide tablet formulations using high-speed electrospinning. Hydroxypropyl-beta-cyclodextrin (HPßCD) was used as a stabilizer and as an electrospinning matrix. In order to optimize the morphology of the fibers, electrospinning of various formulations was carried out using water, methanol/water (1:1), and methanol as solvents. The results showed that using methanol could be advantageous due to the lower viscosity threshold for fiber formation enabling higher potential drug loadings by using less excipient. To increase the productivity of electrospinning, high-speed electrospinning technology was utilized and HPßCD fibers containing 9.1% antisense oligonucleotide were prepared at a rate of ~330 g/h. Furthermore, to increase the drug content of the fibers, a formulation with a 50% drug loading was developed. The fibers had excellent grindability but poor flowability. The ground fibrous powder was mixed with excipients to improve its flowability, which enabled the automatic tableting of the mixture by direct compression. The fibrous HPßCD-antisense oligonucleotide formulations showed no sign of physical or chemical degradation over the 1-year stability study, which also shows the suitability of the HPßCD matrix for the formulation of biopharmaceuticals. The obtained results demonstrate possible solutions for the challenges of electrospinning such as scale-up and downstream processing of the fibers.

5.
Biotechnol J ; 17(5): e2100395, 2022 May.
Article in English | MEDLINE | ID: mdl-35084785

ABSTRACT

An innovative, Raman spectroscopy-based monitoring and control system is introduced in this paper for designing dynamic feeding strategies that allow the maintenance of key cellular nutrients at an ideal level in Chinese hamster ovary cell culture. The Partial Least Squares calibration models built for glucose, lactate and 16 (out of 20) individual amino acids had very good predictive power with low root mean square errors values and high square correlation coefficients. The developed models used for real-time measurement of nutrient and by-product concentrations allowed us to gain better insight into the metabolic behavior and nutritional consumption of cells. To establish a more beneficial nutritional environment for the cells, two types of dynamic feeding strategies were used to control the delivery of two-part multi-component feed media according to the prediction of Raman models (glucose or arginine). As a result, instead of high fluctuations, the nutrients (glucose together with amino acids) were maintained at the desired level providing a more balanced environment for the cells. Moreover, the use of amino acid-based feeding control enabled to prevent the excessive nutrient replenishment and was economically beneficial by significantly reducing the amount of supplied feed medium compared to the glucose-based dynamic fed culture.


Subject(s)
Batch Cell Culture Techniques , Glucose , Amino Acids/metabolism , Animals , Batch Cell Culture Techniques/methods , Bioreactors , Blood Glucose , Blood Glucose Self-Monitoring , CHO Cells , Cricetinae , Cricetulus , Culture Media/chemistry , Glucose/metabolism , Nutrients , Spectrum Analysis, Raman
6.
Int J Pharm ; 591: 120042, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33157211

ABSTRACT

Solid formulations of monoclonal antibodies present several advantages, such as improved stability and increased shelf-life as well as simpler storage and transportation. In this study, we present a gentle drying technology for monoclonal antibodies, applying the water soluble 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as matrix, to prepare a solid reconstitution dosage form. High-speed electrospinning of an aqueous infliximab-containing HP-ß-CD solution was carried out at 25 °C resulting in fibers with an average diameter of 2.5 µm. The mAb-loaded electrospun fibers were successful to preserve the stability of infliximab in solid form. The results of size exclusion chromatography and gel electrophoresis indicated no significant increase in aggregate formation during the electrospinning process compared to the initial matrix solution. The binding activity of infliximab was preserved during electrospinning compared to the reference liquid formulation. Due to the enhanced surface area, excellent reconstitution capability, i.e. clear solution within 2 min without any vigorous mixing, could be achieved in a small-scale reconstitution test. The results of this work demonstrate that high-speed electrospinning is a very promising technique to manufacture the solid formulation of monoclonal antibodies for applications such as fast reconstitutable powders.


Subject(s)
Antibodies, Monoclonal , Desiccation , 2-Hydroxypropyl-beta-cyclodextrin , Powders , Solubility , Water
7.
AAPS PharmSciTech ; 21(6): 214, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32737608

ABSTRACT

A model anaerobic bacterium strain from the gut microbiome (Clostridium butyricum) producing anti-inflammatory molecules was incorporated into polymer-free fibers of a water-soluble cyclodextrin matrix (HP-ß-CD) using a promising scaled-up nanotechnology, high-speed electrospinning. A long-term stability study was also carried out on the bacteria in the fibers. Effect of storage conditions (temperature, presence of oxygen) and growth conditions on the bacterial viability in the fibers was investigated. The viability of the sporulated anaerobic bacteria in the fibers was maintained during 12 months of room temperature storage in the presence of oxygen. Direct compression was used to prepare tablets from the produced bacteria-containing fibers after milling (using an oscillating mill) and mixing with tableting excipients, making easy oral administration of the bacteria possible. No significant decrease was observed in bacterial viability following the processing of the fibers (milling and tableting).


Subject(s)
Bacteria, Anaerobic/isolation & purification , Clostridium butyricum/isolation & purification , Drug Compounding , Gastrointestinal Microbiome , Anaerobiosis , Bacteria, Anaerobic/genetics , Clostridium butyricum/genetics , Excipients , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Tablets , Temperature
8.
Biotechnol Prog ; 36(6): e3052, 2020 11.
Article in English | MEDLINE | ID: mdl-32692473

ABSTRACT

The use of Process Analytical Technology tools coupled with chemometrics has been shown great potential for better understanding and control of mammalian cell cultivations through real-time process monitoring. In-line Raman spectroscopy was utilized to determine the glucose concentration of the complex bioreactor culture medium ensuring real-time information for our process control system. This work demonstrates a simple and fast method to achieve a robust partial least squares calibration model under laboratory conditions in an early phase of the development utilizing shake flask and bioreactor cultures. Two types of dynamic feeding strategies were accomplished where the multi-component feed medium additions were controlled manually and automatically based on the Raman monitored glucose concentration. The impact of these dynamic feedings was also investigated and compared to the traditional bolus feeding strategy on cellular metabolism, cell growth, productivity, and binding activity of the antibody product. Both manual and automated dynamic feeding strategies were successfully applied to maintain the glucose concentration within a narrower and lower concentration range. Thus, besides glucose, the glutamate was also limited at low level leading to reduced production of inhibitory metabolites, such as lactate and ammonia. Consequently, these feeding control strategies enabled to provide beneficial cultivation environment for the cells. In both experiments, higher cell growth and prolonged viable cell cultivation were achieved which in turn led to increased antibody product concentration compared to the reference bolus feeding cultivation.


Subject(s)
Adalimumab/chemistry , Antibodies, Monoclonal/biosynthesis , Batch Cell Culture Techniques/methods , Glucose/metabolism , Adalimumab/biosynthesis , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Bioreactors , CHO Cells , Cricetinae , Cricetulus , Culture Media/chemistry , Culture Media/pharmacology , Glucose/chemistry , Lactic Acid/chemistry , Lactic Acid/metabolism , Spectrum Analysis, Raman
9.
Biotechnol Prog ; 35(5): e2848, 2019 09.
Article in English | MEDLINE | ID: mdl-31115976

ABSTRACT

Raman spectroscopy as a process analytical technology tool was implemented for the monitoring and control of ethanol fermentation carried out with Saccharomyces cerevisiae. The need for the optimization of bioprocesses such as ethanol production, to increase product yield, enhanced the development of control strategies. The control system developed by the authors utilized noninvasive Raman measurements to avoid possible sterilization problems. Real-time data analysis was applied using partial least squares regression (PLS) method. With the aid of spectral pretreatment and multivariate data analysis, the monitoring of glucose and ethanol concentration was successful during yeast fermentation with the prediction error of 4.42 g/L for glucose and 2.40 g/L for ethanol. By Raman spectroscopy-based feedback control, the glucose concentration was maintained at 100 g/L by the automatic feeding of concentrated glucose solution. The control of glucose concentration during fed-batch fermentation resulted in increased ethanol production. Ethanol yield of 86% was achieved compared to the batch fermentation when 75% yield was obtained. The results show that the use of Raman spectroscopy for the monitoring and control of yeast fermentation is a promising way to enhance process understanding and achieve consistently high production yield.


Subject(s)
Ethanol , Fermentation/physiology , Glucose , Spectrum Analysis, Raman/methods , Bioreactors , Culture Media/chemistry , Culture Media/metabolism , Equipment Design , Ethanol/analysis , Ethanol/metabolism , Glucose/analysis , Glucose/metabolism , Saccharomyces cerevisiae , Spectrum Analysis, Raman/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...