Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34685966

ABSTRACT

Managing invasive exotic plant species is a complex challenge, especially for Asian knotweeds (Reynoutria spp.). Tarping is a regularly cited but poorly documented control method, which consists of covering the ground with a tarp (agricultural tarp, geotextile, geomembrane, etc.) to create a physical barrier to hinder plant growth and deprive the plants of light in order to deplete their rhizomatous reserves. To improve our knowledge of tarping in order to identify the key factors of its success or failure, we reviewed the relevant grey and scientific literature and conducted an international survey among managers to collect feedback on tarping experiments. In the literature, as well as in the field, practices are quite heterogeneous, and the method's effectiveness is highly contrasted. A better consideration of knotweed biology may improve the efficacy of the method. Based on the bibliography and survey work, we propose practical recommendations including covering the entire stand, extending the tarping up to 2.5 m beyond its edges for a period of at least six years, and ensuring regular monitoring. Even though tarping does not seem to be a one-size-fits-all solution to eradicate knotweed, it could still be a useful control method once knotweed has become a critical management issue.

2.
Environ Manage ; 64(2): 178-189, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31243537

ABSTRACT

Restoration of riverbanks through soil bioengineering techniques allows managers to combine riverbank stability and riparian ecosystem functioning. This restoration often involves the sowing of a seed mixture, which helps develop herbaceous vegetation. This development and sufficient vegetation cover are essential for protection against erosion and for hosting biodiversity, two of the main goals of riverbank bioengineering. Restoration aims at recreating ecosystems closer to an undisturbed state; choosing seed mixtures of local provenance is therefore encouraged. In this study, we investigated the local seed mixture sown on bioengineered riverbanks and the conditions influencing the first steps of plant development, so as to delineate the setting favoring restoration. We focused on the composition of the seed mixture and germination capacity as well as the effect of sowing density and soil quality on vegetation cover and diversity. We tested four sowing densities: 5, 10, 15, and 30 g.m-1. The seed mixture presented considerable diversity and germination rates were heterogeneous. Sowing density had a positive impact on vegetation cover and diversity, and high cover up to 100% was rapidly reached. Soil quality did not affect vegetation diversity but had a significant effect on vegetation cover, with the nutrient content, notably nitrogen, most probably involved.


Subject(s)
Biodiversity , Ecosystem , Agriculture , Seeds , Soil
3.
J Environ Manage ; 231: 1-9, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30326333

ABSTRACT

Competitive interactions seem to play a major role in invasive plant success. However, they have mostly been addressed through the invader impacts on other species of the plant community and rarely through the way plant communities can contain alien species. Understanding such mechanisms would help in designing restoration projects using plant community competitive properties to control invasive populations. In this study, we looked at the role of competitive interactions in the success of Fallopia japonica (Houtt.) Ronse Decraene using a native willow frequently used in bioengineering techniques: Salix viminalis L. S. viminalis has a high growth rate and is, as such, a potential candidate to compete with F. japonica in restoration projects of invaded areas. Both species were grown in semi-controlled conditions in mesocosms (truck dumpsters), alone or in competition. Morphological traits (plant height, specific leaf area) as well as biomass (aboveground and underground) were measured on each species during two growing seasons. We also quantified spatial expansion of F. japonica. Even under a dense canopy of S. viminalis, F. japonica was able to survive and grow. However, its performance was significantly reduced compared to monocultures and its spatial colonization was less extended. Although S. viminalis biomass was affected by F. japonica, F. japonica expressed competitive stress through a modification of ramet density and height. There was no significant effect of F. japonica on S. viminalis height, enabling this species to dominate. Synthesis and applications: We conclude that S. viminalis succeeded in reducing F. japonica growth by developing a competitive canopy. Bioengineering techniques aiming at restoring a competitive neighborhood can control F. japonica. However, F. japonica's broad underground extension should be taken into account in any management strategy in order to successfully limit its development and spatial spread.


Subject(s)
Fallopia japonica , Polygonum , Salix , Biomass , Plant Leaves
4.
J Environ Manage ; 151: 65-75, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25532058

ABSTRACT

Erosion control is a major issue in the Prealps region since piedmont is subject to both intense flood hazards and anthropic pressure. Riverbank protections may have major impacts on local ecosystem functioning and ecological corridor continuity. This study aimed to estimate the effects of the types of riverbank protection technique (from pure riprap to pure bioengineering) on the taxonomic and ecological composition of plant communities in comparison with unmanaged riverbanks as the referential system. Thirty-eight embankments were sampled in the foothills of the French and Swiss Alps. Four distinct riverbank techniques were analyzed and natural young willow stands were chosen as the referential system. At each site, vegetation was sampled along three transects from the waterline to the top of the riverbank. Plant communities were characterized using biological group composition (growth forms and life history, life strategies and distribution in space and time) and functional diversity indices (MFAD, FDc and wFDc). We identified 177 distinct plant species on 38 sites. Higher species richness levels were observed on bioengineered banks (from an average of 12 species recorded on ripraps to 27 species recorded on bioengineered banks) strongly dominated by Salicaceae species, especially for fascine and cribwall banks. Functional analyses of plant communities highlighted significant differences among bank types (p-value: 0.001) for all selected biological groups. Competitive - ruderal strategy, rooting shoots, stems or leaves that lie down or break off, and unisexual - dioecious, as well as pioneer plants and low shrubs (<4 m tall) distinguished bioengineered bank types. Functional diversity indices confirmed these differences among bank types (MFAD: p-value: 0.002; FDc: p-value: 0.003; wFDc: p-value: 0.005). Riprap always showed the lowest levels on functional diversity indices, fascine and cribwall banks were at the medium level and finally mixed and natural banks the highest level. These results confirm the low ecological potential of purely hard engineering techniques and highlight the similarity of bioengineered techniques and unmanaged riverbanks.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Plants/classification , Rivers , Biodiversity , Bioengineering/methods , Environmental Monitoring , France , Humans , Switzerland
5.
J Environ Manage ; 132: 71-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24291579

ABSTRACT

Using bioengineering techniques to restore areas invaded by Fallopia japonica shows promising results. Planting tree cuttings could allow both rapidly re-establishing a competitive native plant community and reducing F. japonica performance. However, F. japonica has been shown to affect native plant species through different mechanisms such as allelopathy. This article investigates the phytotoxic effect of F. japonica on the resprouting capacity and the growth of three Salicaceae species with potential value for restoration. An experimental design which physically separates donor pots containing either an individual from F. japonica or bare soil from target pots containing cuttings of Populus nigra, Salix atrocinerea or Salix viminali was used. Leachates from donor pots were used to water target pots. The effects of leachates were evaluated by measuring the final biomass of the cuttings. F. japonica leachates inhibited the growth of cuttings, and this effect is linked to the emission of polyphenol compounds by F. japonica. Leachates also induced changes in soil nitrogen composition. These results suggest the existence of allelopathic effects, direct and/or indirect, of F. japonica on the growth of Salicaceae species cuttings. However, the three species were not equally affected, suggesting that the choice of resistant species could be crucial for restoration success.


Subject(s)
Allelopathy , Environmental Restoration and Remediation/methods , Fallopia japonica/physiology , Polyphenols/toxicity , Populus/growth & development , Salix/growth & development , Populus/drug effects , Salix/drug effects , Species Specificity
6.
Environ Manage ; 52(6): 1453-62, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24065383

ABSTRACT

Asian knotweeds (Fallopia spp.) are considered one of the world's most invasive species. Restoring habitats dominated by these exotic species requires a better understanding of the importance of abiotic factors controlling the invasive knotweeds performance. We used observational data obtained on the embankment of the Isère River (France) to study the performance of Fallopia spp. under different soil, light, and disturbance conditions. On the Isère riverbanks, light intensity assessed by light quantity transmitted through canopy was the most important factor explaining the variability observed on knotweed performance expressed as above-ground biomass per square meter. Asian knotweeds were more productive under intensive light conditions. Alternatively other factors such as mowing (twice a year), soil fertility, soil texture, position on the bank or exposure to the sun had no significant effect on knotweed biomass production. We conclude that decreasing light resources, for example, by increasing competitive pressure on sites dominated by Asian knotweeds could be included in management plans to control the populations of this invasive taxon.


Subject(s)
Agriculture/methods , Conservation of Natural Resources/methods , Introduced Species , Light , Polygonum/growth & development , Soil/chemistry , Biomass , France , Rivers
7.
BMC Evol Biol ; 9: 261, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19887006

ABSTRACT

BACKGROUND: Mutualisms are inherently conflictual as one partner always benefits from reducing the costs imposed by the other. Despite the widespread recognition that mutualisms are essentially reciprocal exploitation, there are few documented examples of traits that limit the costs of mutualism. In plant/seed-eating pollinator interactions the only mechanisms reported so far are those specific to one particular system, such as the selective abortion of over-exploited fruits. RESULTS: This study shows that plant chemical defence against developing larvae constitutes another partner sanction mechanism in nursery mutualisms. It documents the chemical defence used by globeflower Trollius europaeus L. (Ranunculaceae) against the seed-eating larvae of six pollinating species of the genus Chiastocheta Pokorny (Anthomyiidae). The correlative field study carried out shows that the severity of damage caused by Chiastocheta larvae to globeflower fruits is linked to the accumulation in the carpel walls of a C-glycosyl-flavone (adonivernith), which reduces the larval seed predation ability per damaged carpel. The different Chiastocheta species do not exploit the fruit in the same way and their interaction with the plant chemical defence is variable, both in terms of induction intensity and larval sensitivity to adonivernith. CONCLUSION: Adonivernith accumulation and larval predation intensity appear to be both the reciprocal cause and effect. Adonivernith not only constitutes an effective chemical means of partner control, but may also play a key role in the sympatric diversification of the Chiastocheta genus.


Subject(s)
Diptera/physiology , Flavonoids/pharmacology , Food Chain , Pollination , Ranunculaceae/chemistry , Ranunculaceae/physiology , Symbiosis , Animals , Diptera/drug effects , Flavones , Larva/drug effects , Larva/growth & development , Seeds/chemistry , Seeds/physiology , Symbiosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...