Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 94(5): 454-62, 2004 May.
Article in English | MEDLINE | ID: mdl-18943763

ABSTRACT

ABSTRACT Fungal isolates from gray leaf spot on perennial ryegrass (prg isolates) were characterized by DNA analyses, mating tests, and pathogenicity assays. All of the prg isolates were interfertile with Triticum isolates and clustered into the crop isolate group (CC group) on a dendrogram constructed from rDNA-internal transcribed spacer 2 sequences. Since the CC group corresponded to a newly proposed species, Magnaporthe oryzae, all of the prg isolates were designated M. oryzae. However, DNA fingerprinting with MGR586, MGR583, and Pot2 showed that the prg isolates are divided into two distinct populations, i.e., TALF isolates and WK isolates. The TALF isolates were virulent only on Lolium species, whereas the WK isolates were less specific, suggesting that gray leaf spot can be caused not only by Lolium-specific isolates but also by less specific isolates. We designated the TALF isolates as Lolium pathotype. The TALF isolates showed diverse karyotypes in spite of being uniform in DNA fingerprints, suggesting that theyare unstable in genome organization.

2.
Mol Gen Genet ; 264(5): 565-77, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11212911

ABSTRACT

We examined the distribution and activity of six transposable elements found in the blast fungus, Pyricularia spp. Sixty-eight isolates from various gramineous plants were used for the survey, and the elements were plotted on a dendrogram constructed on the basis of their rDNA-ITS2 sequences. MGR586 and Pot2 (Class II elements), Mg-SINE (SINE-like element) and MGR583 (LINE-like retrotransposon) were widely distributed among the Pyricularia isolates, suggesting that they are old elements which arose in, or invaded, the Pyricularia population at very early stages in its evolution. By contrast, the distribution of the LTR-retrotransposons MAGGY and Grasshopper was limited or sporadic, suggesting that they are relatively new elements which recently invaded the Pyricularia population by means of horizontal transfer events. The activity of these elements was evaluated by Southern analysis in progenies derived from a cross between a Setaria isolate and a Triticum isolate. Many new MAGGY signals were observed, which were absent in the parental isolates, at various stages of the sexual cycle and following vegetative growth. In contrast, the other elements yielded few, if any, such signals. Analysis of the sequences flanking the new MAGGY insertions revealed that they were each associated with a 5-bp target-site duplication at both ends of the insertion. These data suggested that MAGGY was the most active of the elements tested for transposition in Pyricularia.


Subject(s)
DNA Transposable Elements/genetics , Fungi/genetics , Blotting, Southern , Cloning, Molecular , DNA/metabolism , Models, Genetic , Plants/microbiology , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...