Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 115(17): 170402, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26551093

ABSTRACT

We study the real-time dynamics of vortices in a large elongated Bose-Einstein condensate (BEC) of sodium atoms using a stroboscopic technique. Vortices are produced via the Kibble-Zurek mechanism in a quench across the BEC transition and they slowly precess keeping their orientation perpendicular to the long axis of the trap as expected for solitonic vortices in a highly anisotropic condensate. Good agreement with theoretical predictions is found for the precession period as a function of the orbit amplitude and the number of condensed atoms. In configurations with two or more vortices, we see signatures of vortex-vortex interaction in the shape and visibility of the orbits. In addition, when more than two vortices are present, their decay is faster than the thermal decay observed for one or two vortices. The possible role of vortex reconnection processes is discussed.

2.
Rev Sci Instrum ; 84(6): 063102, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822328

ABSTRACT

We present a compact source of cold sodium atoms suitable for the production of quantum degenerate gases and versatile for a multi-species experiment. The magnetic field produced by permanent magnets allows to simultaneously realize a Zeeman slower and a two-dimensional magneto-optical trap (MOT) within an order of magnitude smaller length than standard sodium sources. We achieve an atomic flux exceeding 4 × 10(9) atoms/s loaded in a MOT, with a most probable longitudinal velocity of 20 m/s, and a brightness larger than 2.5 × 10(12) atoms/s/sr. This atomic source allows us to produce pure Bose-Einstein condensates with more than 10(7) atoms and a background pressure limited lifetime of 5 min.

SELECTION OF CITATIONS
SEARCH DETAIL
...