Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Peptides ; 76: 1-13, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26743504

ABSTRACT

Application of intermedin/adrenomedullin-2 (IMD/AM-2) protects cultured human cardiac vascular cells and fibroblasts from oxidative stress and simulated ischaemia-reoxygenation injury (I-R), predominantly via adrenomedullin AM1 receptor involvement; similar protection had not been investigated previously in human cardiomyocytes (HCM). Expression of IMD, AM and their receptor components was studied in HCM. Receptor subtype involvement in protection by exogenous IMD against injury by simulated I-R was investigated using receptor component-specific siRNAs. Direct protection by endogenous IMD against HCM injury, both as an autocrine factor produced in HCM themselves and as a paracrine factor released from HCMEC co-cultured with HCM, was investigated using peptide-specific siRNA for IMD. IMD, AM and their receptor components (CLR, RAMPs1-3) were expressed in HCM. IMD 1nmol L(-1), applied either throughout ischaemia (3h) and re-oxygenation (1h) or during re-oxygenation (1h) alone, attenuated HCM injury (P<0.05); cell viabilities were 59% and 61% respectively vs. 39% in absence of IMD. Cytoskeletal disruption, protein carbonyl formation and caspase activity followed similar patterns. Pre-treatment (4 days) of HCM with CLR and RAMP2 siRNAs attenuated (P<0.05) protection by exogenous IMD. Pre-treatment of HCMEC with IMD (and AM) siRNA augmented (P<0.05) I-R injury: cell viabilities were 22% (and 32%) vs. 39% untreated HCMEC. Pre-treatment of HCM with IMD (and AM) siRNA did not augment HCM injury: cell viabilities were 37% (and 39%) vs. 39% untreated HCM. Co-culture with HCMEC conferred protection from injury on HCM; such protection was attenuated when HCMEC were pre-treated with IMD (but not AM) siRNA before co-culture. Although IMD is present in HCM, IMD derived from HCMEC and acting in a paracrine manner, predominantly via AM1 receptors, makes a marked contribution to cardiomyocyte protection by the endogenous peptide against acute I-R injury.


Subject(s)
Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/physiology , Peptide Hormones/physiology , Cell Hypoxia , Cell Survival , Cells, Cultured , Coculture Techniques , Endothelial Cells/physiology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Heart Ventricles/pathology , Humans , Oxidative Stress , Paracrine Communication , Protective Factors , Receptors, Adrenomedullin/metabolism
2.
J Physiol ; 590(5): 1181-97, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22183724

ABSTRACT

Intermedin (IMD) protects rodent heart and vasculature from oxidative stress and ischaemia. Less is known about distribution of IMD and its receptors and the potential for similar protection in man. Expression of IMD and receptor components were studied in human aortic endothelium cells (HAECs), smooth muscle cells (HASMCs), cardiac microvascular endothelium cells (HMVECs) and fibroblasts (v-HCFs). Receptor subtype involvement in protection by IMD against injury by hydrogen peroxide (H2O2, 1 mmol l⁻¹) and simulated ischaemia and reperfusion were investigated using receptor component-specific siRNAs. IMD and CRLR, RAMP1, RAMP2 and RAMP3 were expressed in all cell types.When cells were treated with 1 nmol l⁻¹ IMD during exposure to 1 mmol l⁻¹ H2O2 for 4 h, viability was greater vs. H2O2 alone (P<0.05 for all cell types). Viabilities under 6 h simulated ischaemia differed (P<0.05) in the absence and presence of 1 nmol l⁻¹ IMD: HAECs 63% and 85%; HMVECs 51% and 68%; v-HCFs 42% and 96%. IMD 1 nmol l⁻¹ present throughout ischaemia (3 h) and reperfusion (1 h) attenuated injury (P<0.05): viabilities were 95%, 74% and 82% for HAECs, HMVECs and v-HCFs, respectively, relative to those in the absence of IMD (62%, 35%, 32%, respectively). When IMD 1 nmol l⁻¹ was present during reperfusion only, protection was still evident (P<0.05, 79%, 55%, 48%, respectively). Cytoskeletal disruption and protein carbonyl formation followed similar patterns. Pre-treatment (4 days) of HAECs with CRLR or RAMP2, but not RAMP1 or RAMP3, siRNAs abolished protection by IMD (1 nmol l⁻¹) against ischaemia-reperfusion injury. IMD protects human vascular and cardiac non-vascular cells from oxidative stress and ischaemia-reperfusion,predominantly via AM1 receptors.


Subject(s)
Peptide Hormones/physiology , Receptors, Adrenomedullin/physiology , Reperfusion Injury/physiopathology , Adult , Aorta/cytology , Calcitonin Gene-Related Peptide/physiology , Cells, Cultured , Endothelial Cells/physiology , Endothelium, Vascular/cytology , Fibroblasts/physiology , Humans , Myocardium/cytology , Myocytes, Smooth Muscle/physiology , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Receptor Activity-Modifying Proteins/physiology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...