Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22278821

ABSTRACT

Background/ObjectivesPeople with obesity (PWO) face an increased risk of severe outcomes from COVID-19, including hospitalisation, ICU admission and death. Obesity has been seen to impair immune memory following vaccination against influenza, hepatitis B, tetanus, and rabies. Little is known regarding immune memory in PWO following COVID-19 adenovirus vector vaccination. Subjects/MethodsWe investigated SARS-CoV-2 specific T cell responses in 50 subjects, five months following a two-dose primary course of ChAdOx1 nCoV-19 (AZD1222) vaccination. We further divided our cohort into PWO (n=30) and matched controls (n=20). T cell (CD4+, CD8+) cytokine responses (IFN{gamma}, TNF) to SARS-CoV-2 spike peptide pools were determined using multicolour flow cytometry. ResultsCirculating T cells specific for SARS-CoV-2 were readily detected across our cohort, with robust responses to spike peptide stimulation across both T cell lines. PWO and controls had comparable levels of both CD4+ and CD8+ SARS-CoV-2 spike specific T cells. Polyfunctional T cells - associated with enhanced protection against viral infection - were detected at similar frequencies in both PWO and controls. ConclusionsThese data indicate that PWO who have completed a primary course of ChAdOx1 COVID-19 vaccination have robust, durable, and functional antigen specific T cell immunity that is comparable to that seen in people without obesity.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20179283

ABSTRACT

Time analysis of the course of an infectious disease epidemic is a critical way to understand the dynamics of pathogen transmission and the effect of population scale interventions. Computational methods have been applied to the progression of the COVID-19 outbreak in five different countries (Ireland, Germany, UK, South Korea and Iceland) using their reported daily infection data. A Gaussian convolution smoothing function constructed a continuous epidemic line profile that was segmented into longitudinal time series of mathematically fitted individual logistic curves. The time series of fitted curves allowed comparison of disease progression with differences in decreasing daily infection numbers following the epidemic peak being of specific interest. A positive relationship between rate of declining infections and countries with comprehensive COVID-19 testing regimes existed. In contrast, extended epidemic timeframes were recorded for those least prepared for large scale testing and contact tracing. As many countries continue to struggle to implement population wide testing it is prudent to explore additional measures that could be employed. Comparative analysis of healthcare worker (HCW) infection data from Ireland shows it closely related to that of the entire population with respect to trends of daily infection numbers and growth rates over a 57-day period. With 31.6% of all test-confirmed infections in healthcare workers (all employees of healthcare facilities), they represent a concentrated 3% subset of the national population which if exhaustively tested (regardless of symptom status) could provide valuable information on disease progression in the entire population (or set). Mathematically, national population and HCWs can be viewed as a set and subset with significant influences on each other, with solidarity between both an essential ingredient for ending this crisis.

SELECTION OF CITATIONS
SEARCH DETAIL
...