Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 92-93: 716-28, 2016.
Article in English | MEDLINE | ID: mdl-27156197

ABSTRACT

BACKGROUND: There are reports of developmental and reproductive health effects associated with the widely used biocide triclosan. OBJECTIVE: Apply the Navigation Guide systematic review methodology to answer the question: Does exposure to triclosan have adverse effects on human development or reproduction? METHODS: We applied the first 3 steps of the Navigation Guide methodology: 1) Specify a study question, 2) Select the evidence, and 3) Rate quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using pre-specified criteria. We assessed the number and type of all relevant studies. We evaluated each included study for risk of bias and rated the quality and strength of the evidence for the selected outcomes. We conducted a meta-analysis on a subset of suitable data. RESULTS: We found 4282 potentially relevant records, and 81 records met our inclusion criteria. Of the more than 100 endpoints identified by our search, we focused our evaluation on hormone concentration outcomes, which had the largest human and non-human mammalian data set. Three human studies and 8 studies conducted in rats reported thyroxine levels as outcomes. The rat data were amenable to meta-analysis. Because only one of the human thyroxine studies quantified exposure, we did not conduct a meta-analysis of the human data. Through meta-analysis of the data for rats, we estimated for prenatal exposure a 0.09% (95% CI: -0.20, 0.02) reduction in thyroxine concentration per mg triclosan/kg-bw in fetal and young rats compared to control. For postnatal exposure we estimated a 0.31% (95% CI: -0.38, -0.23) reduction in thyroxine per mg triclosan/kg-bw, also compared to control. Overall, we found low to moderate risk of bias across the human studies and moderate to high risk of bias across the non-human studies, and assigned a "moderate/low" quality rating to the body of evidence for human thyroid hormone alterations and a "moderate" quality rating to the body of evidence for non-human thyroid hormone alterations. CONCLUSION: Based on this application of the Navigation Guide systematic review methodology, we concluded that there was "sufficient" non-human evidence and "inadequate" human evidence of an association between triclosan exposure and thyroxine concentrations, and consequently, triclosan is "possibly toxic" to reproductive and developmental health. Thyroid hormone disruption is an upstream indicator of developmental toxicity. Additional endpoints may be identified as being of equal or greater concern as other data are developed or evaluated.


Subject(s)
Environmental Pollutants/toxicity , Fetal Development/drug effects , Thyroxine/metabolism , Triclosan/toxicity , Animals , Anti-Infective Agents, Local/toxicity , Humans , Rats
2.
Birth Defects Res B Dev Reprod Toxicol ; 89(6): 441-66, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21136531

ABSTRACT

Bisphenol A (BPA) exposure has been documented in pregnant women, but consequences for development are not yet widely studied in human populations. This review presents research on the consequences for offspring of BPA exposure during pregnancy. Extensive work in laboratory rodents has evaluated survival and growth of the conceptus, interference with embryonic programs of development, morphological sex differentiation, sex differentiation of the brain and behavior, immune responsiveness, and mechanism of action. Sensitive measures include RAR, aryl hydrocarbon receptor, and Hox A10 gene expression, anogenital distance, sex differentiation of affective and exploratory behavior, and immune hyperresponsiveness. Many BPA effects are reported at low doses (10-50 µg/kg d range) by the oral route of administration. At high doses (>500,000 µg/kg d) fetal viability is compromised. Much of the work has centered around the implications of the estrogenic actions of this agent. Some work related to thyroid mechanism of action has also been explored. BPA research has actively integrated current knowledge of developmental biology, concepts of endocrine disruption, and toxicological research to provide a basis for human health risk assessment.


Subject(s)
Abnormalities, Drug-Induced/etiology , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Estrogens, Non-Steroidal/toxicity , Fetal Development/drug effects , Maternal Exposure/adverse effects , Phenols/toxicity , Abnormalities, Drug-Induced/epidemiology , Animals , Benzhydryl Compounds , Female , Humans , Male , Pregnancy , Sex Differentiation/drug effects
3.
Birth Defects Res B Dev Reprod Toxicol ; 86(3): 157-75, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19455576

ABSTRACT

In developmental and reproductive toxicity studies, drinking water is a common means of delivering the test agent. Reduced consumption of toxicant-containing water raises questions about indirect effects of reduced maternal fluid consumption resulting from unpalatability, versus direct effects of the test compound. Issues to consider include: objective assessment of dehydration and thirst, the relative contributions of innate and learned behaviors to drinking behavior and flavor preference, and the objective assessment of physiologic stress. Not only do lab animals under ad lib conditions consume more water than the minimum required to maintain fluid balance, animals faced with water restriction have substantial physiologic capacity for protection of metabolic processes. Measures of blood biochemistry can provide quantifiable, objective indications of fluid balance, but changes in these parameters could result from other causes such as effects of a test toxicant. Consummatory behaviors in response to perceived need are highly influenced by learning. Hence, the drinking behavior, water intake, and flavor acceptance/preference of animals used in toxicology experiments could be subject to learning experiences with the test compound. Physiological symptoms of stress produced by water deprivation may be distinguishable from the symptoms associated with other generalized stressors, such as food deprivation, but doing so may be beyond the scope of most developmental or reproductive toxicity studies. Use of concurrent controls, paired to test groups for water consumption, could help distinguish between the direct effects of a test toxicant as opposed to effects of reduced water consumption alone.


Subject(s)
Drinking/physiology , Reproduction/physiology , Rodentia/embryology , Rodentia/physiology , Toxicity Tests/methods , Animals , Blood Chemical Analysis , Dehydration/complications , Dehydration/diagnosis , Dehydration/etiology , Dehydration/physiopathology , Down-Regulation/physiology , Primates/physiology , Rats , Rodentia/growth & development , Skin/physiopathology , Thirst/physiology , Water Deprivation/physiology
4.
Birth Defects Res B Dev Reprod Toxicol ; 77(5): 455-70, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17066418

ABSTRACT

BACKGROUND: A variety of progestational agents have been used therapeutically and evaluated for adverse effects over the last 50 years. However, progesterone itself has come into use as a therapeutic agent only recently with the development of an orally bioavailable "micronized" preparation. METHODS: The current review examines progesterone adverse effects as identified in the larger literature on the toxicity of progestational agents and pharmacokinetics. RESULTS: Progesterone has cytoplasmic and membrane receptors in a variety of reproductive and nonreproductive tissues including the brain and is a potent inhibitor of GnRH. Limited information is available on progesterone receptors and actions in the fetus. Concern about exogenous progestagen effects on fetal reproductive tract development have led to considerable human research over the years, but this literature review demonstrates that contemporary developmental toxicology research on progesterone is lacking. CONCLUSIONS: Progesterone is a potent, multi-faceted endocrine agent with an expanding therapeutic profile and a minimal scientific database for evaluating safe use during pregnancy.


Subject(s)
Embryo, Mammalian/drug effects , Embryo, Mammalian/embryology , Fetal Development/drug effects , Fetus/drug effects , Progesterone/adverse effects , Androgens/metabolism , Animals , Animals, Newborn , Humans , Progesterone/metabolism , Progesterone/pharmacokinetics
5.
Birth Defects Res B Dev Reprod Toxicol ; 74(5): 450-69, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16193499

ABSTRACT

BACKGROUND: The common marmoset (Callithrix jacchus) is a New World primate that has been used increasingly in toxicological evaluations including testing for testicular toxicity of pharmaceutical and environmental chemicals. Information on structural and functional characteristics of the testis in common marmosets ("marmoset" in this review) is critical for designing experiments, interpreting data collected, and determining relevance to humans in risk assessment. METHODS: This study provides a comprehensive review on testicular development, structure, function, and regulation in common marmosets. RESULTS: There is little information regarding testicular formation and development during gestation. Based on the overall pattern of embryonic development in marmosets, it is postulated that gonadal formation and testicular differentiation most likely takes place during gestational Week 6-12. After birth, the neonatal period of the first 2-3 weeks and the pubertal period from Months 6-12 are critical for establishment of spermatogenesis in the adult. In the adult, a nine-stage model has been used to describe the organization of seminiferous epithelium and multiple stages per tubular cross-section have been observed. Seminiferous epithelium is organized in a wave or partial-wave manner. There are on average two stages per cross-section of seminiferous tubules in adult marmoset testis. Sertoli cells in the marmoset have a uniform morphology. Marmoset spermatogenesis has a high efficiency. The prime determinant of germ cell production is proliferation and survival of spermatogonia. Sertoli cell proliferation during the neonatal period is regulated by follicle-stimulating hormone (FSH), but chorionic gonadotropin (CG), instead of luteinizing hormone (LH), is the only gonadotropin with luteinizing function in marmoset. The receptor gene for CG in marmoset is unique in that it does not have exon 10. Marmosets have a "generalized steroid hormone resistance," i.e., relatively high levels of steroid hormones in circulation and relatively low response to exogenous steroids. Blockage of FSH, CG, and testosterone production during the first 3 months after birth does not cause permanent damage to the male reproductive system. Initiation of spermatogenesis in the marmoset requires unique factors that are probably not present in other mammals. Normal male marmosets respond to estradiol injection positively (increased LH or CG levels), a pattern seen in normal females or castrated males, but not usually in normal males of other mammalian species. CONCLUSIONS: It seems that the endocrine system including the testis in marmosets has some unique features that have not been observed in rodents, Old World primates, and humans, but detailed comparison in these features among these species will be presented in another review. Based on the data available, marmoset seems to be an interesting model for comparative studies. However, interpretation of experimental findings on the testicular effects in marmosets should be made with serious caution. Depending on potential mode of testicular actions of the chemical under investigation, marmoset may have very limited value in predicting potential testicular or steroid hormone-related endocrine effects of test chemicals in humans.


Subject(s)
Callithrix/physiology , Hormones/metabolism , Sertoli Cells/physiology , Spermatogenesis/physiology , Testis/growth & development , Animals , Male , Testis/metabolism
6.
Article in English | MEDLINE | ID: mdl-14991908

ABSTRACT

Restraint has been used as a procedure to study the effects of stress on gestation outcome in rodents. The effects of restraint could potentially be used as a model for the impact of general stress produced by high doses of toxicants and other interventions. In mice, restraint in the peri-implantation period leads to implantation failure, and restraint at appropriate times in organogenesis produces cleft palate, supernumerary ribs, and resorption. In rats, there is some evidence for an association with restraint for implantation failure, but not for the morphological anomalies. Restraint in late gestation alters adult sexual behavior of male rat offspring, but consequences for their fertility are not known. Intrauterine growth retardation is not commonly associated with gestational restraint. In the few studies where they have been directly compared, different restraint procedures produced graded, qualitatively different, or no effects. Adrenocortical hormones have been implicated as mediating the effect of restraint on cleft palate, but not on supernumerary ribs, implantation failure, or sexual differentiation. Given the variety of restraint procedures and the varying species-dependent consequences, it is not possible to infer a generalizable pattern of developmental effects due to gestational stress from the restraint literature. As an alternative approach, contemporary methods in gene expression and developmental biology could profitably be applied to understanding different patterns of stress-mediated effects of toxicant exposures on intrauterine development.


Subject(s)
Abnormalities, Drug-Induced/etiology , Embryonic and Fetal Development/drug effects , Models, Animal , Restraint, Physical , Rodentia , Stress, Physiological/etiology , Animals , Endpoint Determination , Reproduction/drug effects , Rodentia/embryology , Stress, Psychological/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...