Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JACC Clin Electrophysiol ; 8(10): 1191-1215, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36182566

ABSTRACT

BACKGROUND: The sinoatrial node (SAN) of the heart produces rhythmic action potentials, generated via calcium signaling within and among pacemaker cells. Our previous work has described the SAN as composed of a hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4)-expressing pacemaker cell meshwork, which merges with a network of connexin 43+/F-actin+ cells. It is also known that sympathetic and parasympathetic innervation create an autonomic plexus in the SAN that modulates heart rate and rhythm. However, the anatomical details of the interaction of this plexus with the pacemaker cell meshwork have yet to be described. OBJECTIVES: This study sought to describe the 3-dimensional cytoarchitecture of the mouse SAN, including autonomic innervation, peripheral glial cells, and pacemaker cells. METHODS: The cytoarchitecture of SAN whole-mount preparations was examined by three-dimensional confocal laser-scanning microscopy of triple immunolabeled with combinations of antibodies for HCN4, S100 calcium-binding protein B (S100B), glial fibrillary acidic protein (GFAP), choline acetyltransferase, or vesicular acetylcholine transporter, and tyrosine hydroxylase, and transmission electron microscopy. RESULTS: The SAN exhibited heterogeneous autonomic innervation, which was accompanied by a web of peripheral glial cells and a novel S100B+/GFAP- interstitial cell population, with a unique morphology and a distinct distribution pattern, creating complex interactions with other cell types in the node, particularly with HCN4-expressing cells. Transmission electron microscopy identified a similar population of interstitial cells as telocytes, which appeared to secrete vesicles toward pacemaker cells. Application of S100B to SAN preparations desynchronized Ca2+ signaling in HCN4-expressing cells and increased variability in SAN impulse rate and rhythm. CONCLUSIONS: The autonomic plexus, peripheral glial cell web, and a novel S100B+/GFAP- interstitial cell type embedded within the HCN4+ cell meshwork increase the structural and functional complexity of the SAN and provide a new regulatory pathway of rhythmogenesis.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Sinoatrial Node , Animals , Mice , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Connexin 43/metabolism , Glial Fibrillary Acidic Protein/metabolism , Choline O-Acetyltransferase/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism , Actins/metabolism , Tyrosine 3-Monooxygenase/metabolism , Potassium Channels/metabolism , Brain , Calcium-Binding Proteins/metabolism , Nucleotides, Cyclic/metabolism
2.
Proc Biol Sci ; 288(1953): 20210340, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34187191

ABSTRACT

Adaptive radiations fill ecological and morphological space during evolutionary diversification. Why do some trait combinations evolve during such radiations, whereas others do not? 'Required' constraints of pleiotropy and developmental interaction frequently are implicated in explanations for such patterns, but selective forces also may discourage particular trait combinations. Here, we use a dataset of 351 species to demonstrate the dearth of some theoretically plausible trait combinations of limb, toe and tail length in Anolis lizards. For example, disproportionately few Anolis species display long limbs and short toes. We evaluate recovered patterns within three species of Anolis, and find that cladewide patterns are not evident at intraspecific levels. For example, within species, the combination of long limbs and short toes is not significantly rarer than long limbs and long toes. Differences in scale complicate inter- and intraspecific comparisons and disallow concrete conclusions of cause. However, the absence of the interspecific pattern at the intraspecific level is more compatible with selection favouring particular trait combinations than with 'required' forces dictating which trait combinations are available for selection. We also demonstrate the isometry of toe, tail and hindlimb length relative to body length between species but allometry in four of nine trait-body comparisons within species.


Subject(s)
Lizards , Animals , Biological Evolution , Documentation , Extremities , Lizards/anatomy & histology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...