Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(3): 4989-4999, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33650847

ABSTRACT

Manipulating the way in which colloidal particles self-organize is a central challenge in the design of functional soft materials. Meeting this challenge requires the use of building blocks that interact with one another in a highly specific manner. Their fabrication, however, is limited by the complexity of the available synthesis procedures. Here, we demonstrate that, starting from experimentally available magnetic colloids, we can create a variety of complex building blocks suitable for hierarchical self-organization through a simple scalable process. Using computer simulations, we compress spherical and cubic magnetic colloids in spherical confinement, and investigate their suitability to form small clusters with reproducible structural and magnetic properties. We find that, while the structure of these clusters is highly reproducible, their magnetic character depends on the particle shape. Only spherical particles have the rotational degrees of freedom to produce consistent magnetic configurations, whereas cubic particles frustrate the minimization of the cluster energy, resulting in various magnetic configurations. To highlight their potential for self-assembly, we demonstrate that already clusters of three magnetic particles form highly nontrivial Archimedean lattices, namely, staggered kagome, bounce, and honeycomb, when focusing on different aspects of the same monolayer structure. The work presented here offers a conceptually different way to design materials by utilizing preassembled magnetic building blocks that can readily self-organize into complex structures.

2.
Soft Matter ; 16(18): 4451-4461, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32323672

ABSTRACT

In this work, we show how and why the interactions between charged cubic colloids range from radially isotropic to strongly directionally anisotropic, depending on tuneable factors. Using molecular dynamics simulations, we illustrate the effects of typical solvents to complement experimental investigations of cube assembly. We find that in low-salinity water solutions, where cube self-assembly is observed, the colloidal shape anisotropy leads to the strongest attraction along the corner-to-corner line, followed by edge-to-edge, with a face-to-face configuration of the cubes only becoming energetically favorable after the colloids have collapsed into the van der Waals attraction minimum. Analysing the potential of mean force between colloids with varied cubicity, we identify the origin of the asymmetric microstructures seen in experiment.

3.
Soft Matter ; 14(7): 1080-1087, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29372225

ABSTRACT

For magnetite spherical nanoparticles, the orientation of the dipole moment in the crystal does not affect the morphology of either zero field or field induced structures. For non-spherical particles however, an interplay between particle shape and direction of the magnetic moment can give rise to unusual behaviors, in particular when the moment is not aligned along a particle symmetry axis. Here we disclose for the first time the unique magnetic properties of hematite cubic particles and show the exact orientation of the cubes' dipole moment. Using a combination of experiments and computer simulations, we show that dipolar hematite cubes self-organize into dipolar chains with morphologies remarkably different from those of spheres, and demonstrate that the emergence of these structures is driven by competing anisotropic interactions caused by the particles' shape anisotropy and their fixed dipole moment. Furthermore, we have analytically identified a specific interplay between energy, and entropy at the microscopic level and found that an unorthodox entropic contribution mediates the organization of particles into the kinked nature of the dipolar chains.

4.
ACS Nano ; 11(8): 8153-8166, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28763187

ABSTRACT

The interesting magnetic response of conventional ferro-colloid has proved extremely useful in a wide range of technical applications. Furthermore, the use of nano/micro- sized magnetic particles has proliferated cutting-edge medical research, such as drug targeting and hyperthermia. In order to diversify and improve the application of such systems, new avenues of functionality must be explored. Current efforts focus on incorporating directional interactions that are surplus to the intrinsic magnetic one. This additional directionality can be conveniently introduced by considering systems composed of magnetic particles of different shapes. Here we present a combined analytical and simulation study of permanently magnetized dipolar superball particles; a geometry that closely resembles magnetic cubes synthesized in experiments. We have focused on determining the initial magnetic susceptibility of these particles in dilute suspensions, seeking to quantify the effect of the superball shape parameter on the system response. In turn, we linked the computed susceptibilities to the system microstructure by analyzing cluster composition using a connectivity network analysis. Our study has shown that by increasing the shape parameter of these superball particles, one can alter the outcome of self-assembly processes, leading to the observation of an unanticipated decrease in the initial static magnetic susceptibility.

5.
Nanoscale ; 9(19): 6448-6462, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28466944

ABSTRACT

Systems whose magnetic response can be finely tuned using control parameters, such as temperature and external magnetic field strength, are extremely desirable, functional materials. Magnetic nanoparticles, in particular suspensions thereof, offer opportunities for this controllability to be realised. Cube-like particles are particularly mono-disperse examples that, together with their favourable packing behaviour, make them of significant interest for study. Using a combination of analytical calculations and molecular dynamics we have studied the self-assembly of permanently magnetised dipolar superballs. The superball shape parameter was varied in order to interpolate the region between the already well-studied sphere system and that of the recently investigated cube. Our findings show that as a superball particle becomes more cubic the chain to ring transition, observed in the ground state of spherical particles, occurs at an increasingly larger cluster size. This effect is mitigated, however, by the appearance of a competing configuration; asymmetric rings, a conformation that we show superballs can readily adopt.

6.
Nanoscale ; 7(7): 3217-28, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25619990

ABSTRACT

To design modern materials with a specific response, the consequences of directionally dependent interactions on the self-assembly of constituent nanoparticles need to be properly understood. Directionality arises in the study of anisometric nanoparticles, where geometry has a drastic effect on the properties observed. Given the fact that magnetic interactions are inherently anisotropic, if one constructs these particles from a magnetic medium, an interesting interplay between the two sources of directionality will occur. We have investigated this scenario by exploring systems of dipolar nanocube monolayers. Using an applied analytical approach, in combination with molecular dynamics simulations, we have determined the ground state structures of individual monolayer clusters. Taking inspiration from experiments, two different fixed dipole orientations for the permanent magnetisation of the nanocubes were considered: the first aligned along the [001] crystallographic axis of each cube, and the second along the [111] axis. We discovered that the structure of the ground state is distinctly different for the two systems of permanently magnetised nanocubes; [001] cubes form dipolar chains in the ground state, whereas those with [111] orientation adopt square lattice structures. The discovered configurations in the ground state represent two different structural motifs, as yet unobserved in the ground state of other magnetic nanoparticle systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...