Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 28(41): 414001, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28805655

ABSTRACT

An easy transfer procedure to obtain graphene-based gas sensing devices operating at room temperature (RT) is presented. Starting from chemical vapor deposition-grown graphene on copper foil, we obtained single layer graphene which could be transferred onto arbitrary substrates. In particular, we placed single layer graphene on top of a SiO2/Si substrate with pre-patterned Pt electrodes to realize a chemiresistor gas sensor able to operate at RT. The responses to ammonia (10, 20, 30 ppm) and nitrogen dioxide (1, 2, 3 ppm) are shown at different values of relative humidity, in dark and under 254 nm UV light. In order to check the sensor selectivity, gas response has also been tested towards hydrogen, ethanol, acetone and carbon oxide. Finally, a model based on linear dispersion relation characteristic of graphene, which take into account humidity and UV light effects, has been proposed.

2.
Nanoscale ; 7(26): 11453-9, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26083804

ABSTRACT

A novel technique to lithograph the MoS2 surface is described here. Mechanically exfoliated MoS2 flakes have been patterned with an atomic force microscope tip. After the patterning process, the lithographed areas have been removed by selective chemical etching. The electronic properties of the MoS2 flakes have been analyzed with spatially resolved photoelectron spectroscopy, with tunable incident photon energy, provided by a synchrotron light source. Tens of meV core level shifts can be recorded in relation to the flakes edges, coming from both the exfoliation and from the lithography.

3.
J Chem Phys ; 138(1): 014308, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23298042

ABSTRACT

The electronic structure of croconic acid in the gas phase has been investigated by means of core level and valence band photoemission spectroscopy and compared with hybrid Heyd-Scuseria-Ernzerhof density functional theory calculations. The results have been compared with the corresponding ones of the condensed phase. In the gas phase, due to the absence of hydrogen bond intermolecular interactions, the O 1 s core level spectrum shows a shift of binding energy between the hydroxyl (O-H) and the carbonyl group (C=O) of 2.1 eV, which is larger than the condensed phase value of 1.6 eV. Interestingly, such a shift decreases exponentially with the increase of the O-H distance calculated from theory. The significant differences between the gas and condensed phase valence band spectra highlight the important role played by the hydrogen bonding in shaping the electronic structure of the condensed phase.

4.
J Phys Chem A ; 116(47): 11548-52, 2012 Nov 29.
Article in English | MEDLINE | ID: mdl-23106099

ABSTRACT

The electronic structures of tris(8-hydroxyquinolinato)-erbium(III) (ErQ(3)) and tris(8-hydroxyquinolinato)-aluminum(III) (AlQ(3)) have been studied by means of core level and valence band photoemission spectroscopy with the theoretical support of hybrid Heyd-Scuseria-Ernzerhof density functional theory, to investigate the role played by the central metal atom. A lower binding energy (0.2 eV and 0.3 eV, respectively) of the O 1s and N 1s core levels has been observed for ErQ(3) with respect to AlQ(3). Differences in the valence band spectra, mainly related to the first two peaks next to the highest occupied molecular orbital (HOMO), have been ascribed to an energetic shift (to 0.4 eV lower energies for ErQ(3)) of the σ molecular orbital between the oxygen atoms and the central metal atom. A lower (by 0.5 eV) ionization energy has been measured for the ErQ(3). The interpretation of these results is based on a reduced interaction between the central metal atom and the ligands in ErQ(3), with increased electronic charge around the ligands, due to the higher ionic radius and the lower electronegativity of Er with respect to Al.

5.
Langmuir ; 28(12): 5489-95, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22375596

ABSTRACT

The ability to pattern graphene over large areas with nanometer resolution is the current request for nanodevice fabrication at the industrial scale. Existing methods do not match high throughput with nanometer resolution. We propose a high-throughput resistless extreme-UV (EUV) photolithographic approach operating with sub-micrometer resolution on large area (~10 mm(2)) graphene oxide (GO) films via spatially resolved photoreduction. The efficiency of EUV photoreduction is tested with 46.9 nm coherent light produced by a table top capillary discharge plasma source. Irradiated samples are studied by X-ray photoemission spectroscopy (XPS) and micro-Raman Spectroscopy (µRS). XPS data show that 200 mJ/cm(2) EUV dose produces, onto pristine GO, a 6% increase of sp(2) carbon bonds and a 20% decrease of C-O bonds. µRS data demonstrate a photoreduction efficiency 2 orders of magnitude higher than the one reported in the literature for UV-assisted photoreduction. GO patterning is obtained modulating the EUV dose with a Lloyd's interferometer. The lithographic features consist of GO stripes with modulated reduction degree. Such modulation is investigated and demonstrated by µRS on patterns with 2 µm periodicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...