Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiology (Reading) ; 156(Pt 11): 3288-3297, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20656777

ABSTRACT

The intestinal epithelium forms a protective barrier against luminal contents and the external environment, mediated via intercellular tight junctions (TJs). The TJ can be disrupted via cell signalling induced by either enteric pathogens or pro-inflammatory cytokines, thereby contributing to various intestinal disorders ranging from acute infectious diarrhoea to chronic inflammatory bowel diseases. Probiotics, such as Lactobacillus rhamnosus GG (LGG), are reported to confer beneficial effects on epithelial cells, including antagonizing infections and reducing overt pro-inflammatory responses, but the underlying mechanisms of these observed effects require further characterization. We hypothesized that probiotics preserve barrier function by interfering with pro-inflammatory cytokine signalling. Caco-2bbe cells were seeded into Transwells to attain polarized monolayers with intercellular TJs. Monolayers were inoculated apically with the probiotic LGG 3 h prior to the addition of IFN-γ (100 ng ml(-1)) to the basolateral medium overnight. The monolayers were then placed in fresh basal medium±TNF-α (10 ng ml(-1)) and transepithelial electrical resistance (TER) measurements were taken over the time-course of TNF-α stimulation. To complement the TER findings, cells were processed for zona occludens-1 (ZO-1) immunofluorescence staining. As a measure of TNF-α downstream signalling, cells were immunofluorescently stained for NF-κB p65 subunit and CXCL-8 mRNA was quantified by qRT-PCR. Basal cell culture medium was collected after overnight TNF-α stimulation to measure secreted chemokines, including CXCL-8 (interleukin-8) and CCL-11 (eotaxin). Following LGG inoculation, IFN-γ priming and 24 h TNF-α stimulation, epithelial cells maintained TER and ZO-1 distribution. LGG diminished the nuclear translocation of p65, demonstrated by both immunofluorescence and CXCL-8 mRNA expression. CXCL-8 and CCL-11 protein levels were decreased in LGG-inoculated, cytokine-challenged cells. These findings indicate that LGG alleviates the effects of pro-inflammatory cytokines on epithelial barrier integrity and inflammation, mediated, at least in part, through inhibition of NF-κB signalling.


Subject(s)
Interferon-gamma/metabolism , Intestinal Mucosa/microbiology , Lacticaseibacillus rhamnosus/metabolism , Tight Junctions/metabolism , Tumor Necrosis Factor-alpha/metabolism , Caco-2 Cells , Chemokine CCL11/metabolism , Culture Media , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Inflammation , Interleukin-8/metabolism , Intestinal Mucosa/metabolism , Probiotics , Signal Transduction , Transcription Factor RelA/metabolism
2.
PLoS One ; 4(3): e4889, 2009.
Article in English | MEDLINE | ID: mdl-19293938

ABSTRACT

BACKGROUND: The pathogenesis of enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection is attributed to virulence factors encoded on multiple pathogenicity islands. Previous studies have shown that EHEC O157:H7 modulates host cell signal transduction cascades, independent of toxins and rearrangement of the cytoskeleton. However, the virulence factors and mechanisms responsible for EHEC-mediated subversion of signal transduction remain to be determined. Therefore, the purpose of this study was to first identify differentially regulated genes in response to EHEC O157:H7 grown in the presence of epithelial cells, compared to growth in the absence of epithelial cells (that is, growth in minimal essential tissue culture medium alone, minimal essential tissue culture medium in the presence of 5% CO(2), and Penassay broth alone) and, second, to identify EHEC virulence factors responsible for pathogen modulation of host cell signal transduction. METHODOLOGY/PRINCIPAL FINDINGS: Overnight cultures of EHEC O157:H7 were incubated for 6 hr at 37 degrees C in the presence or absence of confluent epithelial (HEp-2) cells. Total RNA was then extracted and used for microarray analyses (Affymetrix E. coli Genome 2.0 gene chips). Relative to bacteria grown in each of the other conditions, EHEC O157:H7 cultured in the presence of cultured epithelial cells displayed a distinct gene-expression profile. A 2.0-fold increase in the expression of 71 genes and a 2.0-fold decrease in expression of 60 other genes were identified in EHEC O157:H7 grown in the presence of epithelial cells, compared to bacteria grown in media alone. CONCLUSION/SIGNIFICANCE: Microarray analyses and gene deletion identified a protease on O-island 50, gene Z1787, as a potential virulence factor responsible for mediating EHEC inhibition of the interferon (IFN)-gamma-Jak1,2-STAT-1 signal transduction cascade. Up-regulated genes provide novel targets for use in developing strategies to interrupt the infectious process.


Subject(s)
Escherichia coli O157/genetics , Gene Expression Profiling , Genes, Bacterial , Cell Line , Epithelial Cells/microbiology , Escherichia coli O157/growth & development , Escherichia coli O157/pathogenicity , Humans , Oligonucleotide Array Sequence Analysis , Virulence/genetics
3.
Microb Pathog ; 45(5-6): 377-85, 2008.
Article in English | MEDLINE | ID: mdl-18930803

ABSTRACT

Attaching-effacing lesion-inducing Escherichia albertii and the related, but non-attaching-effacing organism, Hafnia alvei, are both implicated as enteric pathogens in humans. However, effects of these bacteria on epithelial cells are not well-characterized. Related enteropathogens, including enterohemorrhagic Escherichia coli O157:H7, decrease epithelial barrier function by disrupting intercellular tight junctions in polarized epithelia. Therefore, this study assessed epithelial barrier function and tight junction protein distribution in polarized epithelia following bacterial infections. Polarized epithelial (MDCK-I and T84) cells grown on filter supports were infected apically with E. coli O157:H7, E. albertii, and H. alvei for 16h at 37 degrees C. All strains decreased transepithelial electrical resistance and increased permeability to a dextran probe in a host cell-dependent manner. Immunofluorescence microscopy showed that both E. coli O157:H7 and E. albertii, but not H. alvei, caused a redistribution of the tight junction protein zona occludens-1. In contrast to E. coli O157:H7, E. albertii and H. alvei did not redistribute claudin-1. Western blotting of whole cell protein extracts demonstrated that each bacterium caused differential changes in tight junction protein expression, dependent on the host cell. These findings demonstrate that E. albertii and H. alvei are candidate enteric pathogens that have both strain-specific and host epithelial cell-dependent effects.


Subject(s)
Enterobacteriaceae Infections/microbiology , Escherichia/pathogenicity , Hafnia alvei/pathogenicity , Intestines/microbiology , Tight Junctions/microbiology , Animals , Bacterial Adhesion , Cell Line , Cell Membrane Permeability , Claudin-1 , Dogs , Enterobacteriaceae Infections/metabolism , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Escherichia/physiology , Escherichia coli O157/pathogenicity , Hafnia alvei/physiology , Humans , Intestinal Mucosa/metabolism , Membrane Proteins/metabolism , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...