Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 114(8): 082501, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25768759

ABSTRACT

A pair of transverse wobbling bands is observed in the nucleus ^{135}Pr. The wobbling is characterized by ΔI=1, E2 transitions between the bands, and a decrease in the wobbling energy confirms its transverse nature. Additionally, a transition from transverse wobbling to a three-quasiparticle band comprised of strong magnetic dipole transitions is observed. These observations conform well to results from calculations with the tilted axis cranking model and the quasiparticle rotor model.

2.
Phys Rev Lett ; 112(7): 072501, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24579591

ABSTRACT

The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

3.
Phys Rev Lett ; 110(2): 022503, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23383897

ABSTRACT

The M1 excitations in the nuclide 90Zr have been studied in a photon-scattering experiment with monoenergetic and linearly polarized beams from 7 to 11 MeV. More than 40 J(π)=1+ states have been identified from observed ground-state transitions, revealing the fine structure of the giant M1 resonance with a centroid energy of 9 MeV and a sum strength of 4.17(56) µ(N)(2). The result for the total M1 strength and its fragmentation are discussed in the framework of the three-phonon quasiparticle-phonon model.

4.
Phys Rev Lett ; 95(23): 232501, 2005 Dec 02.
Article in English | MEDLINE | ID: mdl-16384300

ABSTRACT

Three rotational bands in 74Kr were studied up to (in one case one transition short of) the maximum spin I(max) of their respective single-particle configurations. Their lifetimes have been determined using the Doppler-shift attenuation method. The deduced transition quadrupole moments reveal a modest decrease, but far from a complete loss of collectivity at the maximum spin I(max). This feature, together with the results of mean field calculations, indicates that the observed bands do not terminate at I = I(max).

5.
Phys Rev Lett ; 95(6): 062501, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-16090942

ABSTRACT

The nuclides 98Mo and 100Mo have been studied in photon-scattering experiments by using bremsstrahlung produced from electron beams with kinetic energies from 3.2 to 3.8 MeV. Six electromagnetic dipole transitions in 98Mo and 19 in 100Mo were observed for the first time in the energy range from 2 to 4 MeV. A specific feature in the two nuclides is the de-excitation of one state with spin J = 1 to the 0+ ground state as well as to the first excited 0+ state, which cannot be explained in standard models. We present a model that allows us to deduce the mixing coefficients for the two 0+ shape-isomeric states from the experimental ratio of the transition strengths from the J = 1 state to the 0+ ground state and to the 0+ excited state.

6.
Phys Rev Lett ; 94(9): 092503, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15783959

ABSTRACT

A general but simple method is proposed to eliminate the quantum fluctuations generated by selected one-body operators in the excitation spectrum of a discrete random phase approximation (RPA) Hamiltonian. This method provides an outstanding tool for the removal of the contaminating spurious effects originated from symmetry violations. It can be also applied as a mode filter for analyzing RPA response functions.

7.
Phys Rev Lett ; 84(25): 5732-5, 2000 Jun 19.
Article in English | MEDLINE | ID: mdl-10991041

ABSTRACT

It is shown that the rotating mean field of triaxial nuclei can break the chiral symmetry. Two nearly degenerate DeltaI=1 rotational bands originate from the left-handed and right-handed solutions.

8.
Phys Rev Lett ; 85(12): 2454-7, 2000 Sep 18.
Article in English | MEDLINE | ID: mdl-10978080

ABSTRACT

High-spin states in 72Br were studied with the EUROBALL III spectrometer using the 40Ca(40Ca,alpha3p1n) reaction. The negative-parity band observed in this experiment displays a signature inversion around spin I = 16. The interpretation within the cranked Nilsson-Strutinsky approach shows that this signature pattern is a signal of a substantial triaxial shape change with increasing spin where the nucleus evolves from a triaxial shape with rotation about the intermediate axis at low spin through a collective prolate shape to a triaxial shape but with rotation about the shortest principal axis at high spin.

9.
J Res Natl Inst Stand Technol ; 105(1): 133-6, 2000.
Article in English | MEDLINE | ID: mdl-27551597

ABSTRACT

We have studied the isotopes (82)Rb45, (83)Rb46, and (84)Rb47 to search for magnetic rotation which is predicted in the tilted-axis cranking model for a certain mass region around A = 80. Excited states in these nuclei were populated via the reaction (11)B + (76)Ge with E = 50 MeV at the XTU tandem accelerator of the LNL Legnaro. Based on a γ-coincidence experiment using the spectrometer GASP we have found magnetic dipole bands in each studied nuclide. The regular M1 bands observed in the odd-odd nuclei (82)Rb and (84)Rb include B(M1)/B(E2) ratios decreasing smoothly with increasing spin in a range of 13(-) ≤ J(π) ≤ 16(-). These bands are interpreted in the tilted-axis cranking model on the basis of four-quasiparticle configurations of the type [Formula: see text]. This is the first evidence of magnetic rotation in the A ≈ 80 region. In contrast, the M1 sequences in the odd-even nucleus (83)Rb are not regular, and the B(M1)/B(E2) ratios show a pronounced staggering.

12.
Phys Rev C Nucl Phys ; 42(4): 1436-1442, 1990 Oct.
Article in English | MEDLINE | ID: mdl-9966878
13.
Phys Rev Lett ; 64(1): 29-31, 1990 Jan 01.
Article in English | MEDLINE | ID: mdl-10041265
16.
Phys Rev C Nucl Phys ; 33(4): 1476-1481, 1986 Apr.
Article in English | MEDLINE | ID: mdl-9953299
SELECTION OF CITATIONS
SEARCH DETAIL
...