Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R488-R499, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33533319

ABSTRACT

Cardiovascular regulation is altered by type 2 diabetes mellitus (DM2), producing an abnormal response to muscle metaboreflex. During physical exercise, cerebral blood flow is impaired in patients with DM2, and this phenomenon may reduce cerebral oxygenation (COX). We hypothesized that the simultaneous execution of a mental task (MT) and metaboreflex activation would reduce COX in patients with DM2. Thirteen individuals suffering from DM2 (6 women) and 13 normal age-matched controls (CTL, 6 women) participated in this study. They underwent five different tests, each lasting 12 min: postexercise muscle ischemia (PEMI) to activate the metaboreflex, control exercise recovery (CER), PEMI + MT, CER + MT, and MT alone. COX was evaluated using near-infrared spectroscopy with sensors applied to the forehead. Central hemodynamics was assessed using impedance cardiography. We found that when MT was superimposed on the PEMI-induced metaboreflex, patients with DM2 could not increase COX to the same extent reached by the CTL group (101.13% ± 1.08% vs. 104.23% ± 2.51%, P < 0.05). Moreover, patients with DM2 had higher mean blood pressure and systemic vascular resistance as well as lower stroke volume and cardiac output levels compared with the CTL group, throughout our experiments. It was concluded that patients with DM2 had reduced capacity to enhance COX when undertaking an MT during metaboreflex. Results also confirm that patients with DM2 had dysregulated hemodynamics during metaboreflex, with exaggerated blood pressure response and vasoconstriction. This may have implications for these patients' lack of inclination to exercise.


Subject(s)
Autonomic Nervous System/physiopathology , Cerebrovascular Circulation , Chemoreceptor Cells/metabolism , Diabetes Mellitus, Type 2/physiopathology , Exercise , Mental Processes , Muscle, Skeletal/innervation , Oxygen Consumption , Oxygen/blood , Reflex , Adult , Biomarkers/blood , Case-Control Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/psychology , Female , Homeostasis , Humans , Male , Middle Aged , Muscle Contraction , Muscle, Skeletal/metabolism , Random Allocation , Time Factors
2.
Front Physiol ; 11: 397, 2020.
Article in English | MEDLINE | ID: mdl-32477157

ABSTRACT

Objective: The hemodynamic response to muscle metaboreflex has been reported to be significantly altered by metabolic syndrome (MS), with exaggerated systemic vascular resistance (SVR) increments and reduced cardiac output (CO) in comparison to healthy controls (CTLs). Moreover, patients with metabolic disorders, such as type 2 diabetes, have proven to have impaired cerebral blood flow in response to exercise. Thus, we hypothesized that contemporary mental task (MT) and metaboreflex would result in reduced cerebral oxygenation (COX) in these patients. Methods: Thirteen MS patients (five women) and 14 normal age-matched CTLs (six women) were enrolled in this study. All the participants underwent five different tests, each lasting 12 min: post-exercise muscle ischemia (PEMI) to activate the metaboreflex, control exercise recovery (CER), PEMI + MT, CER + MT, and MT alone. Cerebral oxygenation was evaluated using near-infrared spectroscopy with sensors applied to the forehead. Hemodynamics were measured using impedance cardiography. Results: The main results show that MS patients had higher SVR and lower CO levels compared to the CTL group during metaboreflex activation. Stroke volume and ventricular filling and emptying rates were also significantly reduced. Moreover, when MT was added to PEMI, COX was significantly increased in the CTL group with respect to the baseline (103.46 ± 3.14%), whereas this capacity was reduced in MS patients (102.37 ± 2.46%). Conclusion: It was concluded that (1) patients with MS showed hemodynamic dysregulation during the metaboreflex, with exaggerated vasoconstriction and that (2) as compared to CTL, MS patients had reduced capacity to enhance COX when an MT superimposed the metaboreflex.

SELECTION OF CITATIONS
SEARCH DETAIL
...