Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255814

ABSTRACT

Matrix-bound nanovesicles (MBVs) are a recently discovered type of extracellular vesicles (EVs), and they are characterised by a strong adhesion to extracellular matrix structural proteins (ECM) and ECM-derived biomaterials. MBVs contain a highly bioactive and tissue-specific cargo that recapitulates the biological activity of the source ECM. The rich content of MBVs has shown to be capable of potent cell signalling and of modulating the immune system, thus the raising interest for their application in regenerative medicine. Given the tissue-specificity and the youthfulness of research on MBVs, until now they have only been isolated from a few ECM sources. Therefore, the objective of this research was to isolate and identify the presence of MBVs in decellularised bovine pericardium ECM and to characterise their protein content, which is expected to play a major role in their biological potential. The results showed that nanovesicles, corresponding to the definition of recently described MBVs, could be isolated from decellularised bovine pericardium ECM. Moreover, these MBVs were composed of numerous proteins and cytokines, thus preserving a highly potential biological effect. Overall, this research shows that bovine pericardium MBVs show a rich and tissue-specific biological potential.


Subject(s)
Biocompatible Materials , Regenerative Medicine , Cattle , Animals , Cytokines , Extracellular Matrix Proteins , Pericardium
2.
Cardiovasc Diabetol ; 23(1): 42, 2024 01 28.
Article in English | MEDLINE | ID: mdl-38281933

ABSTRACT

BACKGROUND: Asialoglycoprotein receptor 1 (ASGR1), primarily expressed on hepatocytes, promotes the clearance and the degradation of glycoproteins, including lipoproteins, from the circulation. In humans, loss-of-function variants of ASGR1 are associated with a favorable metabolic profile and reduced incidence of cardiovascular diseases. The molecular mechanisms by which ASGR1 could affect the onset of metabolic syndrome and obesity are unclear. Therefore, here we investigated the contribution of ASGR1 in the development of metabolic syndrome and obesity. METHODS: ASGR1 deficient mice (ASGR1-/-) were subjected to a high-fat diet (45% Kcal from fat) for 20 weeks. The systemic metabolic profile, hepatic and visceral adipose tissue were characterized for metabolic and structural alterations, as well as for immune cells infiltration. RESULTS: ASGR1-/- mice present a hypertrophic adipose tissue with 41% increase in fat accumulation in visceral adipose tissue (VAT), alongside with alteration in lipid metabolic pathways. Intriguingly, ASGR1-/- mice exhibit a comparable response to an acute glucose and insulin challenge in circulation, coupled with notably decreased in circulating cholesterol levels. Although the liver of ASGR1-/- have similar lipid accumulation to the WT mice, they present elevated levels of liver inflammation and a decrease in mitochondrial function. CONCLUSION: ASGR1 deficiency impacts energetic homeostasis during obesity leading to improved plasma lipid levels but increased VAT lipid accumulation and liver damage.


Subject(s)
Asialoglycoprotein Receptor , Metabolic Syndrome , Animals , Humans , Mice , Adipose Tissue/metabolism , Asialoglycoprotein Receptor/genetics , Diet, High-Fat , Inflammation/metabolism , Lipids , Liver/metabolism , Metabolic Syndrome/complications , Mice, Inbred C57BL , Obesity/complications
3.
Cardiovasc Res ; 119(18): 2917-2929, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37922889

ABSTRACT

AIMS: Mitochondria are plastic organelles that continuously undergo biogenesis, fusion, fission, and mitophagy to control cellular energy metabolism, calcium homeostasis, hormones, sterols, and bile acids (BAs) synthesis. Here, we evaluated how the impairment of mitochondrial fusion in hepatocytes affects diet-induced liver steatosis and obesity. METHODS AND RESULTS: Male mice selectively lacking the key protein involved in inner mitochondrial fusion, optic atrophy 1 (OPA1) (OPA1ΔHep) were fed a high fat diet (HFD) for 20 weeks. OPA1ΔHep mice were protected from the development of hepatic steatosis and obesity because of reduced lipid absorption; a profile which was accompanied by increased respiratory exchange ratio in vivo, suggesting a preference for carbohydrates in OPA1ΔHep compared to controls. At the molecular level, this phenotype emerged as a consequence of poor mitochondria-peroxisome- endoplasmic reticulum (ER) tethering in OPA1 deficient hepatocytes, which impaired BAs conjugation and release in the bile, thus impacting lipid absorption from the diet. Concordantly, the liver of subjects with non-alcoholic fatty liver disease (NAFLD) presented an increased expression of OPA1 and of the network of proteins involved in mitochondrial function when compared with controls. CONCLUSION: Patients with NAFLD present increased expression of proteins involved in mitochondrial fusion in the liver. The selective deficency of OPA1 in hepatocytes protects mice from HFD-induced metabolic dysfunction by reducing BAs secretion and dietary lipids absorption as a consequence of reduced liver mitochondria-peroxisome-ER tethering.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/complications , Mitochondrial Dynamics , Liver/metabolism , Hepatocytes/metabolism , Obesity/metabolism , Diet, High-Fat , Lipids , Metabolome , Bile Acids and Salts/metabolism , Mice, Inbred C57BL
4.
Tissue Barriers ; : 2289838, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059583

ABSTRACT

Paraprobiotics and postbiotics represent a valid alternative to probiotic strains for ameliorating and preserving a healthy intestinal epithelial barrier (IEB). The present study investigated the effects of surface layer proteins (S-layer) of the dairy strain Lactobacillus helveticus ATCC® 15009™ (Lb ATCC® 15009™), as paraprobiotic, on the morpho-functional modulation of IEB in comparison to live or heat-inactivated Lb ATCC® 15009™ in an in vitro co-culture of Caco-2/HT-29 70/30 cells. Live or heat-inactivated Lb ATCC® 15009™ negatively affected transepithelial electrical resistance (TEER) and paracellular permeability, and impaired the distribution of Claudin-1, a tight junction (TJ) transmembrane protein, as detected by immunofluorescence (IF). Conversely, the addition of the S-layer improved TEER and decreased permeability in physiological conditions in co-cultures with basal TEER lower than 50 ohmcm2, indicative of a more permeable physiological IEB known as leaky gut. Transmission electron microscopy (TEM) and IF analyses suggested that the S-layer induces a structural TJ rearrangement and desmosomes' formation. S-layer also restored TEER and permeability in the presence of LPS, but not of a mixture of pro-inflammatory cytokines (TNF-α plus IFN-γ). IF analyses showed an increase in Claudin-1 staining when LPS and S-layer were co-administered with respect to LPS alone; in addition, the S-layer counteracted the reduction of alkaline phosphatase detoxification activity and the enhancement of pro-inflammatory interleukin-8 release both induced by LPS. Altogether, these data corroborate a paraprobiotic role of S-layer from Lb ATCC® 15009™ as a possible candidate for therapeutic and prophylactic uses in conditions related to gastrointestinal health and correlated with extra-intestinal disorders.

7.
J Clin Med ; 12(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902728

ABSTRACT

(1) Background: Atopic dermatitis is one of the most common inflammatory skin diseases characterized by T helper (Th) 2 and Th22 cells producing interleukin (IL)-4/IL-13 and IL-22, respectively. The specific contribution of each cytokine to the impairment of the physical and the immune barrier via Toll-like receptors (TLRs) is poorly addressed concerning the epidermal compartment of the skin. (2) Methods: The effect of IL-4, IL-13, IL-22, and the master cytokine IL-23 is evaluated in a 3D model of normal human skin biopsies (n = 7) at the air-liquid interface for 24 and 48 h. We investigated by immunofluorescence the expressions of (i) claudin-1, zonula occludens (ZO)-1 filaggrin, involucrin for the physical barrier and (ii) TLR2, 4, 7, 9, human beta-defensin 2 (hBD-2) for the immune barrier. (3) Results: Th2 cytokines induce spongiosis and fail in impairing tight junction composition, while IL-22 reduces and IL-23 induces claudin-1 expression. IL-4 and IL-13 affect the TLR-mediated barrier largely than IL-22 and IL-23. IL-4 early inhibits hBD-2 expression, while IL-22 and IL-23 induce its distribution. (4) Conclusions: This experimental approach looks to the pathogenesis of AD through molecular epidermal proteins rather than cytokines only and paves the way for tailored patient therapy.

8.
J Clin Med ; 11(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36233782

ABSTRACT

Epidermal junctions help to preserve cutaneous homeostasis and, consequently, protect the body against a wide range of environmental stresses [...].

9.
Dermatology ; 238(5): 829-836, 2022.
Article in English | MEDLINE | ID: mdl-35537419

ABSTRACT

Twenty years after the cloning, characterization, and identification of interleukin (IL)-22 in 2000, the precise biological role of this cytokine in healthy and unhealthy skin is not completely known. The aim of this review is to provide an overview on the recent knowledge available in literature about the origin, sources, targets, molecular mechanism of action, and clinical issues regarding IL-22. Last but not least, recent experimental evidence obtained in a 3D model of organotypic culture of normal human skin highlights its homeostatic role and will be discussed in detail, as personal observations. As most of the data concerning IL-22 immunomodulating activity are obtained from mouse models, this work offers a new perspective on its clinical role. The hypothesis herein advanced is that IL-22 profoundly affects keratinocyte terminal differentiation, whereas, in order to induce a proliferation impairment, a more complex psoriatic-like microenvironment is needed.


Subject(s)
Epidermis/physiology , Interleukins/physiology , Skin Diseases , Animals , Homeostasis , Humans , Keratinocytes , Mice , Psoriasis , Skin , Skin Diseases/physiopathology , Interleukin-22
10.
Arterioscler Thromb Vasc Biol ; 42(7): 839-856, 2022 07.
Article in English | MEDLINE | ID: mdl-35587694

ABSTRACT

BACKGROUND: HDL (high-density lipoprotein) and its major protein component, apoA-I (apolipoprotein A-I), play a unique role in cholesterol homeostasis and immunity. ApoA-I deficiency in hyperlipidemic, atheroprone mice was shown to drive cholesterol accumulation and inflammatory cell activation/proliferation. The present study was aimed at investigating the impact of apoA-I deficiency on lipid deposition and local/systemic inflammation in normolipidemic conditions. METHODS: ApoE deficient mice, apoE/apoA-I double deficient (DKO) mice, DKO mice overexpressing human apoA-I, and C57Bl/6J control mice were fed normal laboratory diet until 30 weeks of age. Plasma lipids were quantified, atherosclerosis development at the aortic sinus and coronary arteries was measured, skin ultrastructure was evaluated by electron microscopy. Blood and lymphoid organs were characterized through histological, immunocytofluorimetric, and whole transcriptome analyses. RESULTS: DKO were characterized by almost complete HDL deficiency and by plasma total cholesterol levels comparable to control mice. Only DKO showed xanthoma formation and severe inflammation in the skin-draining lymph nodes, whose transcriptome analysis revealed a dramatic impairment in energy metabolism and fatty acid oxidation pathways. An increased presence of CD4+ T effector memory cells was detected in blood, spleen, and skin-draining lymph nodes of DKO. A worsening of atherosclerosis at the aortic sinus and coronary arteries was also observed in DKO versus apoE deficient. Human apoA-I overexpression in the DKO background was able to rescue the skin phenotype and halt atherosclerosis development. CONCLUSIONS: HDL deficiency, in the absence of hyperlipidemia, is associated with severe alterations of skin morphology, aortic and coronary atherosclerosis, local and systemic inflammation.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Hyperlipidemias , Xanthomatosis , Animals , Apolipoprotein A-I , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Hyperlipidemias/complications , Hyperlipidemias/genetics , Inflammation/complications , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
11.
Cells Tissues Organs ; 211(5): 611-627, 2022.
Article in English | MEDLINE | ID: mdl-34644704

ABSTRACT

Human epidermis responds to ultraviolet (UV)B-induced damage by tolerating it, restoring it, or undergoing programmed cell death when the damage is massive. Recently, compounds rich in polyphenols, such as Vitis vinifera L. leaf extract (VVLe), have attracted a lot of interest for skin protection. We investigated the effect of VVLe pre-treatment (1 h) in a 2D model of HaCaT cells and in 3D organotypic cultures of normal human skin exposed to a single UVB dose to study the immediate specific events 1 h and the response orchestrated in the epidermal layer 24 h after irradiation, respectively. In both models, transmission electron microscopy analysis was carried out. The expression of the inducible keratin K17, the activation of both pSTAT3 and Nuclear Factor (NF)-κB signalling pathways, and the epidermal distribution of Toll-Like Receptor (TLR) 4 were assessed by immunofluorescence in the 2D and 3D model. In 3D organotypic cultures, thanks to the preservation of a multi-layered structure, the epidermal distribution of the differentiation biomarkers K10 and K14 as well as of K16 was analysed by immunofluorescence, while the release of interleukin (IL)-8 was evaluated by ELISA. In skin bioptic fragments, cytotoxicity and genotoxicity were investigated by LDH assay and Alkaline Comet assay, respectively, and then compared to cell proliferation. The epidermal distribution of the histone γ-H2AX, indicating the fragmented DNA, was analysed by immunofluorescence. In both experimental models, VVLe tuned UVB-induced K17 expression to a different extent in HaCaT cells and in the skin. In HaCaT cells, pSTAT3 activation was induced by UVB and reverted by VVLe pre-treatment. TLR4 expression was triggered by UVB in both models, but VVLe pre-treatment abolished this event only in HaCaT cells. NF-κB immunostaining increased both in the nucleus and in the cytoplasm only in HaCaT cells after UVB irradiation. In all irradiated skin samples, VVLe pre-treatment was not able to revert the inhibition of epidermal proliferation, K16 expression, and IL-8 secretion. The effectiveness of VVLe in contrasting the irradiation-induced genotoxicity still remains unclear. In conclusion, our study clearly shows that K17 is a robust marker induced in keratinocytes upon UVB stimulation and that this event can be reverted by a pre-treatment with VVLe. On the whole, these observations represent a novelty in the scenario of the complex relationships between the effects exerted by UVB rays on human skin and significantly improve the knowledge regarding the modulation of the early epidermal response induced by a single exposure to UVB in the presence of VVLe.


Subject(s)
Toll-Like Receptor 4 , Vitis , Biomarkers , Epidermis , Histones , Humans , Interleukin-8 , Keratin-17 , NF-kappa B , Plant Extracts/pharmacology , Vitis/chemistry
12.
Eur Heart J ; 42(32): 3078-3090, 2021 08 21.
Article in English | MEDLINE | ID: mdl-34252181

ABSTRACT

AIMS: PCSK9 is secreted into the circulation, mainly by the liver, and interacts with low-density lipoprotein receptor (LDLR) homologous and non-homologous receptors, including CD36, thus favouring their intracellular degradation. As PCSK9 deficiency increases the expression of lipids and lipoprotein receptors, thus contributing to cellular lipid accumulation, we investigated whether this could affect heart metabolism and function. METHODS AND RESULTS: Wild-type (WT), Pcsk9 KO, Liver conditional Pcsk9 KO and Pcsk9/Ldlr double KO male mice were fed for 20 weeks with a standard fat diet and then exercise resistance, muscle strength, and heart characteristics were evaluated. Pcsk9 KO presented reduced running resistance coupled to echocardiographic abnormalities suggestive of heart failure with preserved ejection fraction (HFpEF). Heart mitochondrial activity, following maximal coupled and uncoupled respiration, was reduced in Pcsk9 KO mice compared to WT mice and was coupled to major changes in cardiac metabolism together with increased expression of LDLR and CD36 and with lipid accumulation. A similar phenotype was observed in Pcsk9/Ldlr DKO, thus excluding a contribution for LDLR to cardiac impairment observed in Pcsk9 KO mice. Heart function profiling of the liver selective Pcsk9 KO model further excluded the involvement of circulating PCSK9 in the development of HFpEF, pointing to a possible role locally produced PCSK9. Concordantly, carriers of the R46L loss-of-function variant for PCSK9 presented increased left ventricular mass but similar ejection fraction compared to matched control subjects. CONCLUSION: PCSK9 deficiency impacts cardiac lipid metabolism in an LDLR independent manner and contributes to the development of HFpEF.


Subject(s)
Heart Failure , Proprotein Convertase 9 , Animals , Heart Failure/genetics , Male , Mice , Mice, Knockout , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Stroke Volume
13.
Eur J Histochem ; 65(1)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33666385

ABSTRACT

This pilot study was aimed at comparing TLR7/TLR9 expression, cytoskeletal arrangement, and cell proliferation by indirect immunofluorescence in parallel lesional and non lesional skin samples of guttate psoriasis (PG) and psoriasis vulgaris (PV) in five male patients for each group (n=10). TLR7 expression was detected throughout all the epidermal compartment in PV samples, while in PG skin was restricted to the granular layer. TLR9 was present in the granular layer of non lesional skin and in the suprabasal layers of PV/PG lesional skin. Cell proliferation was localized in all the epidermal layers in lesional PG and PV, consistently with the immunopositivity for the "psoriatic keratin" K16. In the suprabasal layers of lesional PG and PV skin, a similar K17 expression was detected and K10 exhibited a patchy distribution. The present results suggest that TLR7 expression can be considered an intrinsic and differential histomorphological feature of PV.


Subject(s)
Cell Proliferation/physiology , Cytoskeleton/metabolism , Psoriasis/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/metabolism , Biomarkers/metabolism , Fluorescent Antibody Technique , Humans , Keratin-10/metabolism , Keratin-16/metabolism , Keratin-17/metabolism , Keratinocytes/metabolism , Male , Pilot Projects , Psoriasis/classification , Psoriasis/pathology , Skin/pathology
15.
Eur J Histochem ; 64(2)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32312032

ABSTRACT

Interleukin 17A (IL-17A), mainly produced by the T helper subclass Th17, plays a key role in the psoriatic plaque formation and progression. The clinical effectiveness of anti-IL-17A agents is documented, but the early and specific mechanisms of their protection are not identified yet. The challenge of the present study is to investigate the possible reversal exerted by a specific anti-IL-17A agent on the psoriatic events induced by IL-17A in a three-dimensional organotypic model of normal human skin. Bioptic skin fragments obtained after aesthetic surgery of healthy women (n=5) were incubated with i) IL-17A biological inhibitor (anti-IL-17A), ii) IL-17A, iii) a combination of IL-17A and its specific IL-17A biological inhibitor (COMBO). A Control group was in parallel cultured and incubation lasted for 24 and 48 h epidermal-side-up at the air-liquid interface. All subjects were represented in all experimental groups at all considered time-points. Keratinocyte proliferation and the presence of epidermal Langerhans cells were quantitatively estimated. In parallel with transmission electron microscopy analysis, immunofluorescence studies for the epidermal distribution of keratin (K)10, K14, K16, K17, filaggrin/occludin, Toll-like Receptor 4, and Nuclear Factor kB were performed. IL-17A inhibited cell proliferation and induced K17 expression, while samples incubated with the anti-IL-17A agent were comparable to controls. In the COMBO group the IL-17A-induced effects were almost completely reverted. Our study, for the first time, elucidates the most specific psoriatic cellular events that can be partially affected or completely reverted by a specific anti-IL-17A agent during the early phases of the plaque onset and progression. On the whole, this work contributes to expand the knowledge of the psoriatic tableau.


Subject(s)
Antibodies, Monoclonal/pharmacology , Interleukin-17/antagonists & inhibitors , Psoriasis/metabolism , Skin/metabolism , Adult , Antibodies, Monoclonal/immunology , Female , Filaggrin Proteins , Humans , Interleukin-17/immunology , Interleukin-17/pharmacology , Keratins/metabolism , Langerhans Cells/metabolism , NF-kappa B p50 Subunit/metabolism , Occludin/metabolism , Psoriasis/pathology , S100 Proteins/metabolism , Skin/ultrastructure , Toll-Like Receptor 4/metabolism , Young Adult
16.
Br J Pharmacol ; 177(2): 328-345, 2020 01.
Article in English | MEDLINE | ID: mdl-31621898

ABSTRACT

BACKGROUND AND PURPOSE: Fenretinide, a synthetic retinoid derivative first investigated for cancer prevention and treatment, has been shown to ameliorate glucose tolerance, improve plasma lipid profile and reduce body fat mass. These effects, together with its ability to inhibit ceramide synthesis, suggest that fenretinide may have an anti-atherosclerotic action. EXPERIMENTAL APPROACH: To this aim, nine-week-old apoE-knockout (EKO) female mice were fed for twelve weeks a Western diet, without (control) or with (0.1% w/w) fenretinide. As a reference, wild-type (WT) mice were treated similarly. Growth and metabolic parameters were monitored throughout the study. Atherosclerosis development was evaluated in the aorta and at the aortic sinus. Blood and lymphoid organs were further characterized with thorough cytological/histological and immunocytofluorimetric analyses. KEY RESULTS: Fenretinide treatment significantly lowered body weight, glucose levels and plasma levels of total cholesterol, triglycerides, and phospholipids. In the liver, fenretinide remarkably reduced hepatic glycogenosis and steatosis driven by the Western diet. Treated spleens were abnormally enlarged, with severe follicular atrophy and massive extramedullary haematopoiesis. Severe renal hemosiderin deposition was observed in treated EKO mice. Treatment resulted in a threefold increase of total leukocytes (WT and EKO) and raised the activated/resting monocyte ratio in EKO mice. Finally, atherosclerosis development was markedly increased at the aortic arch, thoracic and abdominal aorta of fenretinide-treated mice. CONCLUSIONS AND IMPLICATIONS: We provide the first evidence that, despite beneficial metabolic effects, fenretinide treatment may enhance the development of atherosclerosis.


Subject(s)
Antineoplastic Agents/toxicity , Aorta/drug effects , Aortic Diseases/chemically induced , Atherosclerosis/chemically induced , Energy Metabolism/drug effects , Fenretinide/toxicity , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Glucose/drug effects , Blood Glucose/metabolism , Diet, Western , Disease Models, Animal , Disease Progression , Female , Lipids/blood , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Spleen/drug effects , Spleen/metabolism , Spleen/pathology , Weight Loss/drug effects
17.
Toxicol Lett ; 313: 130-136, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31276767

ABSTRACT

We previously demonstrated that based on their potency, contact allergens differently modulate Blimp-1/NLRP12 expression in human keratinocytes, with the extreme allergen 2,4-dinitrochlorobenzene (DNCB) more rapidly upregulating Blimp-1, leading to downregulation of NLRP12, and to the production of interleukin-18 (IL-18). The purpose of this study was to further investigate the effects of DNCB and para-phenylenediamine (PPD) on the expression of the proteins of the inflammasome, namely NLRP3, ASC and caspase 1 by western blot analysis; to define the intracellular localization and co-localization of NLRP3 and NLPR12 by immunoprecipitation and immunohistochemistry; and to define the role of NF-κB in Blimp-1 induction by pharmacological inhibition. The human keratinocyte cell line NCTC2544 was used for all experiments. Dose and time course experiments were performed to evaluate the effect of the selected contact allergens on the parameters investigated. Results indicate, that consistent with previous finding, DNCB more rapidly (3 h) induces NLRP3, ASC protein expression and caspase-1 activation compared to PPD. Immunoprecipitation studies show the recruitment of ASC to the inflammasome following exposure to both allergens, while high level of NLRP12 and less ASC protein were found associated in control cells. By immunohistochemistry, we found increased NLRP3 expression following exposure to contact allergens, and observed a nuclear co-localization of the two proteins, indicating the NLRP12 likely acts preventing the cytosolic localization of NLRP3 and inflammasome assembly. Finally, contact allergen-induced Blimp-1 mRNA and protein expression can be completely blocked by inhibiting NF-κB activation, confirming the central role of NF-κB in contact allergen-induced keratinocyte activation.


Subject(s)
Allergens/toxicity , Dermatitis, Allergic Contact/etiology , Dinitrochlorobenzene/toxicity , Inflammasomes/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Keratinocytes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phenylenediamines/toxicity , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/metabolism , Cell Line , Dermatitis, Allergic Contact/genetics , Dermatitis, Allergic Contact/metabolism , Dose-Response Relationship, Drug , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Keratinocytes/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Time Factors
18.
Neurobiol Dis ; 124: 14-28, 2019 04.
Article in English | MEDLINE | ID: mdl-30389403

ABSTRACT

Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but adult mice showed signs of cerebellar ataxia detectable by beam test. Although cerebellar pathology was negative, electrophysiological analysis showed a trend towards increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was altered, with greatly reduced expression of fusogenic Opa1 isoforms. Mitochondrial alterations were also detected in cerebella of 18-month-old heterozygous mutants and may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.


Subject(s)
ATP-Dependent Proteases/genetics , ATPases Associated with Diverse Cellular Activities/genetics , Disease Models, Animal , Mitochondria/metabolism , Spinocerebellar Ataxias/congenital , Animals , Female , Gene Knock-In Techniques , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Mutation, Missense , Purkinje Cells/physiology , Purkinje Cells/ultrastructure , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/pathology
19.
Nutrition ; 58: 156-166, 2019 02.
Article in English | MEDLINE | ID: mdl-30419477

ABSTRACT

OBJECTIVES: The intestinal cell function can be modulated by the type and quantity of nutrients. The aim of this study was to evaluate the effects of an excess of nutrients on intestinal morphofunctional features and a possible association of inflammation in a 70/30 Caco2/HT-29 intestinal in vitro co-culture. METHODS: An excess of nutrients (EX) was obtained by progressively increasing the medium change frequency with respect to standard cell growth conditions (ST) from confluence (T0) to 15 d after confluence (T15). RESULTS: In comparison with the ST group, the EX group revealed a maintenance in the number of microvilli, an increase in follicle like-structures and mucus production, and a decrease in the number of tight junction. The specific activity of markers of intestinal differentiation, alkaline phosphatase and aminopeptidase N, and of the enterocyte differentiation specific marker, dipeptidyl peptidase-IV, were progressively raised. The transepithelial electrical resistance, indicative of the co-culture barrier properties, decreased, whereas Lucifer yellow Papp evaluation, an index of the paracellular permeability to large molecules, showed an increase. Reactive oxygen species and nitric oxide production, indicative of an oxidative status, together with interleukin-6, interleukin-8, indicative of a low-grade inflammation, and peptide YY secretion were higher in the EX group than in the ST group. The differences between ST and EX were particularly evident at T15. CONCLUSION: These data support the suitability of our in vitro gut model for obesity studies at the molecular level and the necessity to standardize the medium frequency change in intestinal culture.


Subject(s)
Inflammation/metabolism , Intestinal Mucosa/metabolism , Nutrients/metabolism , Biological Transport , Caco-2 Cells , Coculture Techniques , HT29 Cells , Humans , In Vitro Techniques , Permeability , Tight Junctions/metabolism
20.
Biosci Rep ; 38(2)2018 04 27.
Article in English | MEDLINE | ID: mdl-29540534

ABSTRACT

An intestinal 70/30 Caco2/HT-29 co-culture was set up starting from the parental populations of differentiated cells to mimic the human intestinal epithelium. Co-culture was harvested at confluence 0 (T0) and at 3, 6, 10, and 14 days post confluence after plating (T3, T6, T10, and T14, respectively) for morphological and functional analysis. Transmission electron microscopy revealed different features from T0 to T14: microvilli and a complete junctional apparatus from T6, mucus granules from T3, as also confirmed by PAS/Alcian Blue staining. The specific activity of alkaline phosphatase (ALP), aminopeptidase N (APN), and dipeptidyl peptidase IV (DPPIV) progressively increased after T0, indicating the acquirement of a differentiated and digestive phenotype. Transepithelial electrical resistance (TEER), indicative of the barrier properties of the monolayer, increased from T0 up to T6 reaching values very similar to the human small intestine. The apparent permeability coefficient for Lucifer Yellow (LY), along with morphological analysis, reveals a good status of the tight junctions. At T14, HT-29 cells reduced to 18.4% and formed domes, indicative of transepithelial transport of nutrients. This Caco2/HT-29 co-culture could be considered a versatile and suitable in vitro model of human intestinal epithelium for the presence of more than one prevalent intestinal cell type, by means of a minimum of 6 to a maximum of 14 post-confluence days obtained without the need of particular inducers of subclones and growth support to reach an intestinal differentiated phenotype.


Subject(s)
Antigens, Differentiation/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Models, Biological , Biological Transport, Active , Caco-2 Cells , Coculture Techniques , Humans , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...