Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cochrane Database Syst Rev ; 5: CD011535, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35603936

ABSTRACT

BACKGROUND: Psoriasis is an immune-mediated disease with either skin or joints manifestations, or both, and it has a major impact on quality of life. Although there is currently no cure for psoriasis, various treatment strategies allow sustained control of disease signs and symptoms. The relative benefit of these treatments remains unclear due to the limited number of trials comparing them directly head-to-head, which is why we chose to conduct a network meta-analysis. OBJECTIVES: To compare the efficacy and safety of non-biological systemic agents, small molecules, and biologics for people with moderate-to-severe psoriasis using a network meta-analysis, and to provide a ranking of these treatments according to their efficacy and safety. SEARCH METHODS: For this update of the living systematic review, we updated our searches of the following databases monthly to October 2021: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. SELECTION CRITERIA: Randomised controlled trials (RCTs) of systemic treatments in adults over 18 years with moderate-to-severe plaque psoriasis, at any stage of treatment, compared to placebo or another active agent. The primary outcomes were: proportion of participants who achieved clear or almost clear skin, that is, at least Psoriasis Area and Severity Index (PASI) 90; proportion of participants with serious adverse events (SAEs) at induction phase (8 to 24 weeks after randomisation). DATA COLLECTION AND ANALYSIS: We conducted duplicate study selection, data extraction, risk of bias assessment and analyses. We synthesised data using pairwise and network meta-analysis (NMA) to compare treatments and rank them according to effectiveness (PASI 90 score) and acceptability (inverse of SAEs). We assessed the certainty of NMA evidence for the two primary outcomes and all comparisons using CINeMA, as very low, low, moderate, or high. We contacted study authors when data were unclear or missing. We used the surface under the cumulative ranking curve (SUCRA) to infer treatment hierarchy, from 0% (worst for effectiveness or safety) to 100% (best for effectiveness or safety). MAIN RESULTS: This update includes an additional 19 studies, taking the total number of included studies to 167, and randomised participants to 58,912, 67.2% men, mainly recruited from hospitals. Average age was 44.5 years, mean PASI score at baseline was 20.4 (range: 9.5 to 39). Most studies were placebo-controlled (57%). We assessed a total of 20 treatments. Most (140) trials were multicentric (two to 231 centres). One-third of the studies (57/167) had high risk of bias; 23 unclear risk, and most (87) low risk. Most studies (127/167) declared funding by a pharmaceutical company, and 24 studies did not report a funding source. Network meta-analysis at class level showed that all interventions (non-biological systemic agents, small molecules, and biological treatments) showed a higher proportion of patients reaching PASI 90 than placebo. Anti-IL17 treatment showed a higher proportion of patients reaching PASI 90 compared to all the interventions, except anti-IL23. Biologic treatments anti-IL17, anti-IL12/23, anti-IL23 and anti-TNF alpha showed a higher proportion of patients reaching PASI 90 than the non-biological systemic agents. For reaching PASI 90, the most effective drugs when compared to placebo were (SUCRA rank order, all high-certainty evidence): infliximab (risk ratio (RR) 50.19, 95% CI 20.92 to 120.45), bimekizumab (RR 30.27, 95% CI 25.45 to 36.01), ixekizumab (RR 30.19, 95% CI 25.38 to 35.93), risankizumab (RR 28.75, 95% CI 24.03 to 34.39). Clinical effectiveness of these drugs was similar when compared against each other. Bimekizumab, ixekizumab and risankizumab showed a higher proportion of patients reaching PASI 90 than other anti-IL17 drugs (secukinumab and brodalumab) and guselkumab. Infliximab, anti-IL17 drugs (bimekizumab, ixekizumab, secukinumab and brodalumab) and anti-IL23 drugs (risankizumab and guselkumab) except tildrakizumab showed a higher proportion of patients reaching PASI 90 than ustekinumab and three anti-TNF alpha agents (adalimumab, certolizumab and etanercept). Ustekinumab was superior to certolizumab; adalimumab and ustekinumab were superior to etanercept. No significant difference was shown between apremilast and two non-biological drugs: ciclosporin and methotrexate. We found no significant difference between any of the interventions and the placebo for the risk of SAEs. The risk of SAEs was significantly lower for participants on methotrexate compared with most of the interventions. Nevertheless, the SAE analyses were based on a very low number of events with low- to moderate-certainty for all the comparisons (except methotrexate versus placebo, which was high-certainty). The findings therefore have to be viewed with caution. For other efficacy outcomes (PASI 75 and Physician Global Assessment (PGA) 0/1), the results were similar to the results for PASI 90. Information on quality of life was often poorly reported and was absent for several of the interventions. AUTHORS' CONCLUSIONS: Our review shows that, compared to placebo, the biologics infliximab, bimekizumab, ixekizumab, and risankizumab were the most effective treatments for achieving PASI 90 in people with moderate-to-severe psoriasis on the basis of high-certainty evidence. This NMA evidence is limited to induction therapy (outcomes measured from 8 to 24 weeks after randomisation), and is not sufficient for evaluating longer-term outcomes in this chronic disease. Moreover, we found low numbers of studies for some of the interventions, and the young age (mean 44.5 years) and high level of disease severity (PASI 20.4 at baseline) may not be typical of patients seen in daily clinical practice. We found no significant difference in the assessed interventions and placebo in terms of SAEs, and the safety evidence for most interventions was low to moderate quality. More randomised trials directly comparing active agents are needed, and these should include systematic subgroup analyses (sex, age, ethnicity, comorbidities, psoriatic arthritis). To provide long-term information on the safety of treatments included in this review, an evaluation of non-randomised studies and postmarketing reports from regulatory agencies is needed. Editorial note: This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.


Subject(s)
Biological Products , Psoriasis , Adalimumab/adverse effects , Adult , Biological Products/therapeutic use , Etanercept/therapeutic use , Female , Humans , Infliximab/therapeutic use , Male , Methotrexate/therapeutic use , Network Meta-Analysis , Psoriasis/drug therapy , Systematic Reviews as Topic , Tumor Necrosis Factor-alpha , Ustekinumab/therapeutic use
2.
Cell Rep ; 37(10): 110087, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879270

ABSTRACT

The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.


Subject(s)
Bacteria/metabolism , Energy Metabolism , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Metabolic Diseases/microbiology , Animals , Bacteria/growth & development , Chronic Disease , Dysbiosis , Host-Pathogen Interactions , Humans , Metabolic Diseases/metabolism , Symbiosis
3.
Cochrane Database Syst Rev ; 4: CD011535, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33871055

ABSTRACT

BACKGROUND: Psoriasis is an immune-mediated disease for which some people have a genetic predisposition. The condition manifests in inflammatory effects on either the skin or joints, or both, and it has a major impact on quality of life. Although there is currently no cure for psoriasis, various treatment strategies allow sustained control of disease signs and symptoms. Several randomised controlled trials (RCTs) have compared the efficacy of the different systemic treatments in psoriasis against placebo. However, the relative benefit of these treatments remains unclear due to the limited number of trials comparing them directly head-to-head, which is why we chose to conduct a network meta-analysis. OBJECTIVES: To compare the efficacy and safety of non-biological systemic agents, small molecules, and biologics for people with moderate-to-severe psoriasis using a network meta-analysis, and to provide a ranking of these treatments according to their efficacy and safety. SEARCH METHODS: For this living systematic review we updated our searches of the following databases monthly to September 2020: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. We searched two trials registers to the same date. We checked the reference lists of included studies and relevant systematic reviews for further references to eligible RCTs. SELECTION CRITERIA: Randomised controlled trials (RCTs) of systemic treatments in adults (over 18 years of age) with moderate-to-severe plaque psoriasis or psoriatic arthritis whose skin had been clinically diagnosed with moderate-to-severe psoriasis, at any stage of treatment, in comparison to placebo or another active agent. The primary outcomes of this review were: the proportion of participants who achieved clear or almost clear skin, that is, at least Psoriasis Area and Severity Index (PASI) 90 at induction phase (from 8 to 24 weeks after the randomisation), and the proportion of participants with serious adverse events (SAEs) at induction phase. We did not evaluate differences in specific adverse events. DATA COLLECTION AND ANALYSIS: Several groups of two review authors independently undertook study selection, data extraction, 'Risk of bias' assessment, and analyses. We synthesised the data using pair-wise and network meta-analysis (NMA) to compare the treatments of interest and rank them according to their effectiveness (as measured by the PASI 90 score) and acceptability (the inverse of serious adverse events). We assessed the certainty of the body of evidence from the NMA for the two primary outcomes and all comparisons, according to CINeMA, as either very low, low, moderate, or high. We contacted study authors when data were unclear or missing. We used the surface under the cumulative ranking curve (SUCRA) to infer on treatment hierarchy: 0% (treatment is the worst for effectiveness or safety) to 100% (treatment is the best for effectiveness or safety). MAIN RESULTS: We included 158 studies (18 new studies for the update) in our review (57,831 randomised participants, 67.2% men, mainly recruited from hospitals). The overall average age was 45 years; the overall mean PASI score at baseline was 20 (range: 9.5 to 39). Most of these studies were placebo-controlled (58%), 30% were head-to-head studies, and 11% were multi-armed studies with both an active comparator and a placebo. We have assessed a total of 20 treatments. In all, 133 trials were multicentric (two to 231 centres). All but two of the outcomes included in this review were limited to the induction phase (assessment from 8 to 24 weeks after randomisation). We assessed many studies (53/158) as being at high risk of bias; 25 were at an unclear risk, and 80 at low risk. Most studies (123/158) declared funding by a pharmaceutical company, and 22 studies did not report their source of funding. Network meta-analysis at class level showed that all of the interventions (non-biological systemic agents, small molecules, and biological treatments) were significantly more effective than placebo in reaching PASI 90. At class level, in reaching PASI 90, the biologic treatments anti-IL17, anti-IL12/23, anti-IL23, and anti-TNF alpha were significantly more effective than the small molecules and the non-biological systemic agents. At drug level, infliximab, ixekizumab, secukinumab, brodalumab, risankizumab and guselkumab were significantly more effective in reaching PASI 90 than ustekinumab and three anti-TNF alpha agents: adalimumab, certolizumab, and etanercept. Ustekinumab and adalimumab were significantly more effective in reaching PASI 90 than etanercept; ustekinumab was more effective than certolizumab, and the clinical effectiveness of ustekinumab and adalimumab was similar. There was no significant difference between tofacitinib or apremilast and three non-biological drugs: fumaric acid esters (FAEs), ciclosporin and methotrexate. Network meta-analysis also showed that infliximab, ixekizumab, risankizumab, bimekizumab, secukinumab, guselkumab, and brodalumab outperformed other drugs when compared to placebo in reaching PASI 90. The clinical effectiveness of these drugs was similar, except for ixekizumab which had a better chance of reaching PASI 90 compared with secukinumab, guselkumab and brodalumab. The clinical effectiveness of these seven drugs was: infliximab (versus placebo): risk ratio (RR) 50.29, 95% confidence interval (CI) 20.96 to 120.67, SUCRA = 93.6; high-certainty evidence; ixekizumab (versus placebo): RR 32.48, 95% CI 27.13 to 38.87; SUCRA = 90.5; high-certainty evidence; risankizumab (versus placebo): RR 28.76, 95% CI 23.96 to 34.54; SUCRA = 84.6; high-certainty evidence; bimekizumab (versus placebo): RR 58.64, 95% CI 3.72 to 923.86; SUCRA = 81.4; high-certainty evidence; secukinumab (versus placebo): RR 25.79, 95% CI 21.61 to 30.78; SUCRA = 76.2; high-certainty evidence; guselkumab (versus placebo): RR 25.52, 95% CI 21.25 to 30.64; SUCRA = 75; high-certainty evidence; and brodalumab (versus placebo): RR 23.55, 95% CI 19.48 to 28.48; SUCRA = 68.4; moderate-certainty evidence. Conservative interpretation is warranted for the results for bimekizumab (as well as mirikizumab, tyrosine kinase 2 inhibitor, acitretin, ciclosporin, fumaric acid esters, and methotrexate), as these drugs, in the NMA, have been evaluated in few trials. We found no significant difference between any of the interventions and the placebo for the risk of SAEs. Nevertheless, the SAE analyses were based on a very low number of events with low to moderate certainty for all the comparisons. Thus, the results have to be viewed with caution and we cannot be sure of the ranking. For other efficacy outcomes (PASI 75 and Physician Global Assessment (PGA) 0/1) the results were similar to the results for PASI 90. Information on quality of life was often poorly reported and was absent for several of the interventions. AUTHORS' CONCLUSIONS: Our review shows that compared to placebo, the biologics infliximab, ixekizumab, risankizumab, bimekizumab, secukinumab, guselkumab and brodalumab were the most effective treatments for achieving PASI 90 in people with moderate-to-severe psoriasis on the basis of moderate- to high-certainty evidence. This NMA evidence is limited to induction therapy (outcomes were measured from 8 to 24 weeks after randomisation) and is not sufficient for evaluation of longer-term outcomes in this chronic disease. Moreover, we found low numbers of studies for some of the interventions, and the young age (mean age of 45 years) and high level of disease severity (PASI 20 at baseline) may not be typical of patients seen in daily clinical practice. Another major concern is that short-term trials provide scanty and sometimes poorly-reported safety data and thus do not provide useful evidence to create a reliable risk profile of treatments. We found no significant difference in the assessed interventions and placebo in terms of SAEs, and the evidence for all the interventions was of low to moderate quality. In order to provide long-term information on the safety of the treatments included in this review, it will also be necessary to evaluate non-randomised studies and postmarketing reports released from regulatory agencies. In terms of future research, randomised trials directly comparing active agents are necessary once high-quality evidence of benefit against placebo is established, including head-to-head trials amongst and between non-biological systemic agents and small molecules, and between biological agents (anti-IL17 versus anti-IL23, anti-IL23 versus anti-IL12/23, anti-TNF alpha versus anti-IL12/23). Future trials should also undertake systematic subgroup analyses (e.g. assessing biological-naïve participants, baseline psoriasis severity, presence of psoriatic arthritis, etc.). Finally, outcome measure harmonisation is needed in psoriasis trials, and researchers should look at the medium- and long-term benefit and safety of the interventions and the comparative safety of different agents. Editorial note: This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunosuppressive Agents/therapeutic use , Psoriasis/drug therapy , Antibodies, Monoclonal, Humanized , Chronic Disease , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Female , Humans , Male , Middle Aged , Molecular Targeted Therapy , Network Meta-Analysis , Placebos/therapeutic use , Randomized Controlled Trials as Topic , Remission Induction , Severity of Illness Index , Treatment Outcome , Tumor Necrosis Factor-alpha/antagonists & inhibitors
4.
Cochrane Database Syst Rev ; 1: CD011535, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31917873

ABSTRACT

BACKGROUND: Psoriasis is an immune-mediated disease for which some people have a genetic predisposition. The condition manifests in inflammatory effects on either the skin or joints, or both, and it has a major impact on quality of life. Although there is currently no cure for psoriasis, various treatment strategies allow sustained control of disease signs and symptoms. Several randomised controlled trials (RCTs) have compared the efficacy of the different systemic treatments in psoriasis against placebo. However, the relative benefit of these treatments remains unclear due to the limited number of trials comparing them directly head-to-head, which is why we chose to conduct a network meta-analysis. This is the baseline update of a Cochrane Review first published in 2017, in preparation for this Cochrane Review becoming a living systematic review. OBJECTIVES: To compare the efficacy and safety of conventional systemic agents, small molecules, and biologics for people with moderate-to-severe psoriasis, and to provide a ranking of these treatments according to their efficacy and safety. SEARCH METHODS: We updated our research using the following databases to January 2019: the Cochrane Skin Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS and the conference proceedings of a number of dermatology meetings. We also searched five trials registers and the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) reports (until June 2019). We checked the reference lists of included and excluded studies for further references to relevant RCTs. SELECTION CRITERIA: Randomised controlled trials (RCTs) of systemic treatments in adults (over 18 years of age) with moderate-to-severe plaque psoriasis or psoriatic arthritis whose skin had been clinically diagnosed with moderate-to-severe psoriasis, at any stage of treatment, in comparison to placebo or another active agent. The primary outcomes of this review were: the proportion of participants who achieved clear or almost clear skin, that is, at least Psoriasis Area and Severity Index (PASI) 90 at induction phase (from 8 to 24 weeks after the randomisation), and the proportion of participants with serious adverse effects (SAEs) at induction phase. We did not evaluate differences in specific adverse effects. DATA COLLECTION AND ANALYSIS: Several groups of two review authors independently undertook study selection, data extraction, 'Risk of bias' assessment, and analyses. We synthesised the data using pair-wise and network meta-analysis (NMA) to compare the treatments of interest and rank them according to their effectiveness (as measured by the PASI 90 score) and acceptability (the inverse of serious adverse effects). We assessed the certainty of the body of evidence from the NMA for the two primary outcomes, according to GRADE, as either very low, low, moderate, or high. We contacted study authors when data were unclear or missing. MAIN RESULTS: We included 140 studies (31 new studies for the update) in our review (51,749 randomised participants, 68% men, mainly recruited from hospitals). The overall average age was 45 years; the overall mean PASI score at baseline was 20 (range: 9.5 to 39). Most of these studies were placebo-controlled (59%), 30% were head-to-head studies, and 11% were multi-armed studies with both an active comparator and a placebo. We have assessed a total of 19 treatments. In all, 117 trials were multicentric (two to 231 centres). All but two of the outcomes included in this review were limited to the induction phase (assessment from 8 to 24 weeks after randomisation). We assessed many studies (57/140) as being at high risk of bias; 42 were at an unclear risk, and 41 at low risk. Most studies (107/140) declared funding by a pharmaceutical company, and 22 studies did not report the source of funding. Network meta-analysis at class level showed that all of the interventions (conventional systemic agents, small molecules, and biological treatments) were significantly more effective than placebo in terms of reaching PASI 90. At class level, in terms of reaching PASI 90, the biologic treatments anti-IL17, anti-IL12/23, anti-IL23, and anti-TNF alpha were significantly more effective than the small molecules and the conventional systemic agents. At drug level, in terms of reaching PASI 90, infliximab, all of the anti-IL17 drugs (ixekizumab, secukinumab, bimekizumab and brodalumab) and the anti-IL23 drugs (risankizumab and guselkumab, but not tildrakizumab) were significantly more effective in reaching PASI 90 than ustekinumab and 3 anti-TNF alpha agents: adalimumab, certolizumab and etanercept. Adalimumab and ustekinumab were significantly more effective in reaching PASI 90 than certolizumab and etanercept. There was no significant difference between tofacitinib or apremilast and between two conventional drugs: ciclosporin and methotrexate. Network meta-analysis also showed that infliximab, ixekizumab, risankizumab, bimekizumab, guselkumab, secukinumab and brodalumab outperformed other drugs when compared to placebo in reaching PASI 90. The clinical effectiveness for these seven drugs was similar: infliximab (versus placebo): risk ratio (RR) 29.52, 95% confidence interval (CI) 19.94 to 43.70, Surface Under the Cumulative Ranking (SUCRA) = 88.5; moderate-certainty evidence; ixekizumab (versus placebo): RR 28.12, 95% CI 23.17 to 34.12, SUCRA = 88.3, moderate-certainty evidence; risankizumab (versus placebo): RR 27.67, 95% CI 22.86 to 33.49, SUCRA = 87.5, high-certainty evidence; bimekizumab (versus placebo): RR 58.64, 95% CI 3.72 to 923.86, SUCRA = 83.5, low-certainty evidence; guselkumab (versus placebo): RR 25.84, 95% CI 20.90 to 31.95; SUCRA = 81; moderate-certainty evidence; secukinumab (versus placebo): RR 23.97, 95% CI 20.03 to 28.70, SUCRA = 75.4; high-certainty evidence; and brodalumab (versus placebo): RR 21.96, 95% CI 18.17 to 26.53, SUCRA = 68.7; moderate-certainty evidence. Conservative interpretation is warranted for the results for bimekizumab (as well as tyrosine kinase 2 inhibitor, acitretin, ciclosporin, fumaric acid esters, and methotrexate), as these drugs, in the NMA, have been evaluated in few trials. We found no significant difference between any of the interventions and the placebo for the risk of SAEs. Nevertheless, the SAE analyses were based on a very low number of events with low to very low certainty for just under half of the treatment estimates in total, and moderate for the others. Thus, the results have to be viewed with caution and we cannot be sure of the ranking. For other efficacy outcomes (PASI 75 and Physician Global Assessment (PGA) 0/1) the results were very similar to the results for PASI 90. Information on quality of life was often poorly reported and was absent for several of the interventions. AUTHORS' CONCLUSIONS: Our review shows that compared to placebo, the biologics infliximab, ixekizumab, risankizumab, bimekizumab, guselkumab, secukinumab and brodalumab were the best choices for achieving PASI 90 in people with moderate-to-severe psoriasis on the basis of moderate- to high-certainty evidence (low-certainty evidence for bimekizumab). This NMA evidence is limited to induction therapy (outcomes were measured from 8 to 24 weeks after randomisation) and is not sufficient for evaluation of longer-term outcomes in this chronic disease. Moreover, we found low numbers of studies for some of the interventions, and the young age (mean age of 45 years) and high level of disease severity (PASI 20 at baseline) may not be typical of patients seen in daily clinical practice. Another major concern is that short-term trials provide scanty and sometimes poorly-reported safety data and thus do not provide useful evidence to create a reliable risk profile of treatments. Indeed, we found no significant difference in the assessed interventions and placebo in terms of SAEs, but the evidence for all the interventions was of very low to moderate quality. In order to provide long-term information on the safety of the treatments included in this review, it will also be necessary to evaluate non-randomised studies and postmarketing reports released from regulatory agencies. In terms of future research, randomised trials comparing directly active agents are necessary once high-quality evidence of benefit against placebo is established, including head-to-head trials amongst and between conventional systemic and small molecules, and between biological agents (anti-IL17 versus anti-IL23, anti-IL23 versus anti-IL12/23, anti-TNF alpha versus anti-IL12/23). Future trials should also undertake systematic subgroup analyses (e.g. assessing biological-naïve participants, baseline psoriasis severity, presence of psoriatic arthritis, etc.). Finally, outcome measure harmonisation is needed in psoriasis trials, and researchers should look at the medium- and long-term benefit and safety of the interventions and the comparative safety of different agents. Editorial note: This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunosuppressive Agents/therapeutic use , Psoriasis/drug therapy , Antibodies, Monoclonal, Humanized , Chronic Disease , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Humans , Molecular Targeted Therapy , Network Meta-Analysis , Randomized Controlled Trials as Topic , Remission Induction , Severity of Illness Index , Treatment Outcome , Tumor Necrosis Factor-alpha/antagonists & inhibitors
5.
Cochrane Database Syst Rev ; (8): CD009992, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25090020

ABSTRACT

BACKGROUND: Tinea infections are fungal infections of the skin caused by dermatophytes. It is estimated that 10% to 20% of the world population is affected by fungal skin infections. Sites of infection vary according to geographical location, the organism involved, and environmental and cultural differences. Both tinea corporis, also referred to as 'ringworm' and tinea cruris or 'jock itch' are conditions frequently seen by primary care doctors and dermatologists. The diagnosis can be made on clinical appearance and can be confirmed by microscopy or culture. A wide range of topical antifungal drugs are used to treat these superficial dermatomycoses, but it is unclear which are the most effective. OBJECTIVES: To assess the effects of topical antifungal treatments in tinea cruris and tinea corporis. SEARCH METHODS: We searched the following databases up to 13th August 2013: the Cochrane Skin Group Specialised Register, CENTRAL in The Cochrane Library (2013, Issue 7), MEDLINE (from 1946), EMBASE (from 1974), and LILACS (from 1982). We also searched five trials registers, and checked the reference lists of included and excluded studies for further references to relevant randomised controlled trials. We handsearched the journal Mycoses from 1957 to 1990. SELECTION CRITERIA: Randomised controlled trials in people with proven dermatophyte infection of the body (tinea corporis) or groin (tinea cruris). DATA COLLECTION AND ANALYSIS: Two review authors independently carried out study selection, data extraction, assessment of risk of bias, and analyses. MAIN RESULTS: Of the 364 records identified, 129 studies with 18,086 participants met the inclusion criteria. Half of the studies were judged at high risk of bias with the remainder judged at unclear risk. A wide range of different comparisons were evaluated across the 129 studies, 92 in total, with azoles accounting for the majority of the interventions. Treatment duration varied from one week to two months, but in most studies this was two to four weeks. The length of follow-up varied from one week to six months. Sixty-three studies contained no usable or retrievable data mainly due to the lack of separate data for different tinea infections. Mycological and clinical cure were assessed in the majority of studies, along with adverse effects. Less than half of the studies assessed disease relapse, and hardly any of them assessed duration until clinical cure, or participant-judged cure. The quality of the body of evidence was rated as low to very low for the different outcomes.Data for several outcomes for two individual treatments were pooled. Across five studies, significantly higher clinical cure rates were seen in participants treated with terbinafine compared to placebo (risk ratio (RR) 4.51, 95% confidence interval (CI) 3.10 to 6.56, number needed to treat (NNT) 3, 95% CI 2 to 4). The quality of evidence for this outcome was rated as low. Data for mycological cure for terbinafine could not be pooled due to substantial heterogeneity.Mycological cure rates favoured naftifine 1% compared to placebo across three studies (RR 2.38, 95% CI 1.80 to 3.14, NNT 3, 95% CI 2 to 4) with the quality of evidence rated as low. In one study, naftifine 1% was more effective than placebo in achieving clinical cure (RR 2.42, 95% CI 1.41 to 4.16, NNT 3, 95% CI 2 to 5) with the quality of evidence rated as low.Across two studies, mycological cure rates favoured clotrimazole 1% compared to placebo (RR 2.87, 95% CI 2.28 to 3.62, NNT 2, 95% CI 2 to 3).Data for several outcomes were pooled for three comparisons between different classes of treatment. There was no difference in mycological cure between azoles and benzylamines (RR 1.01, 95% CI 0.94 to 1.07). The quality of the evidence was rated as low for this comparison. Substantial heterogeneity precluded the pooling of data for mycological and clinical cure when comparing azoles and allylamines. Azoles were slightly less effective in achieving clinical cure compared to azole and steroid combination creams immediately at the end of treatment (RR 0.67, 95% CI 0.53 to 0.84, NNT 6, 95% CI 5 to 13), but there was no difference in mycological cure rate (RR 0.99, 95% CI 0.93 to 1.05). The quality of evidence for these two outcomes was rated as low for mycological cure and very low for clinical cure.All of the treatments that were examined appeared to be effective, but most comparisons were evaluated in single studies. There was no evidence for a difference in cure rates between tinea cruris and tinea corporis. Adverse effects were minimal - mainly irritation and burning; results were generally imprecise between active interventions and placebo, and between different classes of treatment. AUTHORS' CONCLUSIONS: The pooled data suggest that the individual treatments terbinafine and naftifine are effective. Adverse effects were generally mild and reported infrequently. A substantial number of the studies were more than 20 years old and of unclear or high risk of bias; there is however, some evidence that other topical antifungal treatments also provide similar clinical and mycological cure rates, particularly azoles although most were evaluated in single studies.There is insufficient evidence to determine if Whitfield's ointment, a widely used agent is effective.Although combinations of topical steroids and antifungals are not currently recommended in any clinical guidelines, relevant studies included in this review reported higher clinical cure rates with similar mycological cure rates at the end of treatment, but the quality of evidence for these outcomes was rated very low due to imprecision, indirectness and risk of bias. There was insufficient evidence to confidently assess relapse rates in the individual or combination treatments.Although there was little difference between different classes of treatment in achieving cure, some interventions may be more appealing as they require fewer applications and a shorter duration of treatment. Further, high quality, adequately powered trials focusing on patient-centred outcomes, such as patient satisfaction with treatment should be considered.


Subject(s)
Antifungal Agents/therapeutic use , Pruritus/drug therapy , Tinea/drug therapy , Administration, Cutaneous , Adrenal Cortex Hormones/therapeutic use , Allylamine/analogs & derivatives , Allylamine/therapeutic use , Antifungal Agents/administration & dosage , Azoles/therapeutic use , Benzoates/therapeutic use , Drug Combinations , Female , Humans , Male , Naphthalenes/therapeutic use , Randomized Controlled Trials as Topic , Salicylates/therapeutic use , Terbinafine
7.
Health Info Libr J ; 22(3): 182-8, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16109146

ABSTRACT

OBJECTIVES: To assess the use of existing libraries; usage of the Internet and biomedical databases; and need for training on use of the Internet and biomedical databases for primary care staff. METHODS: A postal survey of general practitioners (GPs), practice nurses (PNs) and practice managers (PMs) in Nottingham and Rotherham, UK. RESULTS: Overall, 243 questionnaires were used. The response rate in Nottingham was 24%, in Rotherham it was 34%. Reported use of libraries was low (30%), with PNs reporting significantly higher usage (65%) than others (P < 0.01). Most respondents reported using the Internet (81%), but fewer (44%) reported using databases. GPs and PNs were significantly more likely to report using databases than PMs (P < 0.01). Lack of training was the most reported barrier to using the Internet (67%) and databases (52%). Overall, 52% of respondents reported wanting Internet training, 64% wanted database training. The percentages requesting training on databases were high among GPs and PNs, but significantly lower for PMs (P = 0.02). CONCLUSIONS: There are differences in the usage of libraries and electronic resources among the primary care team, and in reported training needs. While the reported levels of usage of the Internet and biomedical databases are encouraging, our study identified a training need. If met, this could increase usage further.


Subject(s)
Attitude of Health Personnel , Attitude to Computers , Clinical Competence/statistics & numerical data , Library Materials/statistics & numerical data , Medical Staff/standards , Primary Health Care/standards , Adult , Computer User Training/methods , Cross-Sectional Studies , Female , Health Knowledge, Attitudes, Practice , Humans , Internet/statistics & numerical data , Male , Medical Staff/education , Medical Staff/statistics & numerical data , Middle Aged , Primary Health Care/statistics & numerical data , Surveys and Questionnaires , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...