Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
Biomater Sci ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993162

ABSTRACT

With the increasing research and deepening understanding of the glioblastoma (GBM) tumour microenvironment (TME), novel and more effective therapeutic strategies have been proposed. The GBM TME involves intricate interactions between tumour and non-tumour cells, promoting tumour progression. Key therapeutic goals for GBM treatment include improving the immunosuppressive microenvironment, enhancing the cytotoxicity of immune cells against tumours, and inhibiting tumour growth and proliferation. Consequently, remodeling the GBM TME using nanotechnology has emerged as a promising approach. Nanoparticle-based drug delivery enables targeted delivery, thereby improving treatment specificity, facilitating combination therapies, and optimizing drug metabolism. This review provides an overview of the GBM TME and discusses the methods of remodeling the GBM TME using nanotechnology. Specifically, it explores the application of nanotechnology in ameliorating immune cell immunosuppression, inducing immunogenic cell death, stimulating, and recruiting immune cells, regulating tumour metabolism, and modulating the crosstalk between tumours and other cells.

2.
Mater Today Bio ; 26: 101080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757056

ABSTRACT

The unique gradient structure and complex composition of osteochondral tissue pose significant challenges in defect regeneration. Restoration of tissue heterogeneity while maintaining hyaline cartilage components has been a difficulty of an osteochondral tissue graft. A novel class of multi-crosslinked polysaccharide-based three-dimensional (3D) printing inks, including decellularized natural cartilage (dNC) and nano-hydroxyapatite, was designed to create a gradient scaffold with a robust interface-binding force. Herein, we report combining a dual-nozzle cross-printing technology and a gradient crosslinking method to create the scaffolds, demonstrating stable mechanical properties and heterogeneous bilayer structures. Biofunctional assessments revealed the remarkable regenerative effects of the scaffold, manifesting three orders of magnitude of mRNA upregulation during chondrogenesis and the formation of pure hyaline cartilage. Transcriptomics of the regeneration site in vivo and scaffold cell interaction tests in vitro showed that printed porous multilayer scaffolds could form the correct tissue structure for cell migration. More importantly, polysaccharides with dNC provided a hydrophilic microenvironment. The microenvironment is crucial in osteochondral regeneration because it could guide the regenerated cartilage to ensure the hyaline phenotype.

3.
ACS Nano ; 18(16): 10667-10687, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38592060

ABSTRACT

Cartilage injuries are escalating worldwide, particularly in aging society. Given its limited self-healing ability, the repair and regeneration of damaged articular cartilage remain formidable challenges. To address this issue, nanomaterials are leveraged to achieve desirable repair outcomes by enhancing mechanical properties, optimizing drug loading and bioavailability, enabling site-specific and targeted delivery, and orchestrating cell activities at the nanoscale. This review presents a comprehensive survey of recent research in nanomedicine for cartilage repair, with a primary focus on biomaterial design considerations and recent advances. The review commences with an introductory overview of the intricate cartilage microenvironment and further delves into key biomaterial design parameters crucial for treating cartilage damage, including microstructure, surface charge, and active targeting. The focal point of this review lies in recent advances in nano drug delivery systems and nanotechnology-enabled 3D matrices for cartilage repair. We discuss the compositions and properties of these nanomaterials and elucidate how these materials impact the regeneration of damaged cartilage. This review underscores the pivotal role of nanotechnology in improving the efficacy of biomaterials utilized for the treatment of cartilage damage.


Subject(s)
Biocompatible Materials , Cartilage, Articular , Nanomedicine , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Nanomedicine/methods , Cartilage, Articular/drug effects , Animals , Drug Delivery Systems , Tissue Engineering , Regeneration/drug effects
4.
Bioact Mater ; 35: 416-428, 2024 May.
Article in English | MEDLINE | ID: mdl-38384986

ABSTRACT

The bidirectional relationship between osteochondral defects (OCD) and osteoarthritis (OA), with each condition exacerbating the other, makes OCD regeneration in the presence of OA challenging. Type II collagen (Col2) is important in OCD regeneration and the management of OA, but its potential applications in cartilage tissue engineering are significantly limited. This study investigated the regeneration capacity of Col2 scaffolds in critical-sized OCDs under surgically induced OA conditions and explored the underlying mechanisms that promoted OCD regeneration. Furthermore, the repair potential of Col2 scaffolds was validated in over critical-sized OCD models. After 90 days or 150 days since scaffold implantation, complete healing was observed histologically in critical-sized OCD, evidenced by the excellent integration with surrounding native tissues. The newly formed tissue biochemically resembled adjacent natural tissue and exhibited comparable biomechanical properties. The regenerated OA tissue demonstrated lower expression of genes associated with cartilage degradation than native OA tissue but comparable expression of genes related to osteochondral anabolism compared with normal tissue. Additionally, transcriptome and proteome analysis revealed the hindrance of TGF-ß-Smad1/5/8 in regenerated OA tissue. In conclusion, the engrafting of Col2 scaffolds led to the successful regeneration of critical-sized OCDs under surgically induced OA conditions by inhibiting the TGF-ß-Smad1/5/8 signaling pathway.

5.
ACS Nano ; 18(3): 2077-2090, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38194361

ABSTRACT

Joint cartilage lesions affect the global population in the current aging society. Maintenance and rejuvenation of articular cartilage with hyaline phenotype remains a challenge as the underlying mechanism has not been completely understood. Here, we have designed and performed a mechanism study using scaffolds made of type II collagen (Col2) as the 3D cell cultural platforms, on some of which nanoaggregates comprising extracts of chondrocyte membrane (CCM) were coated as the antagonist of Col2. Dedifferentiated chondrocytes were, respectively, seeded into these Col2 based scaffolds with (antCol2S) or without (Col2S) CCM coating. After 6 weeks, in Col2S, the chondrocytes were rejuvenated to regain hyaline phenotype, whereas this redifferentiation effect was attenuated in antCol2S. Transcriptomic and proteomic profiling indicated that the Wnt/ß-catenin signaling pathway, which is an opponent to maintenance of the hyaline cartilaginous phenotype, was inhibited in Col2S, but it was contrarily upregulated in antCol2S due to the antagonism and shielding against Col2 by the CCM coating. Specifically, in antCol2S, since the coated CCM nanoaggregates contain the same components as those present on the surface of the seeded chondrocytes, the corresponding ligand sites on Col2 had been preoccupied and saturated by CCM coating before exposure to the seeded cells. The results indicated that the ligation between Col2 ligands and integrin α5 receptors on the surface of the seeded chondrocytes in antCol2S was antagonized by the CCM coating, which facilitates the Wnt/ß-catenin signaling toward the loss of hyaline cartilaginous phenotype. This finding reveals the contribution of Col2 for maintenance and rejuvenation of the hyaline cartilaginous phenotype in chondrocytes.


Subject(s)
Cartilage, Articular , Chondrocytes , Chondrocytes/metabolism , Hyalin/metabolism , Proteomics , Cells, Cultured , Collagen/metabolism , Phenotype
6.
Macromol Rapid Commun ; 45(5): e2300508, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38049086

ABSTRACT

Interface tissue repair requires the construction of biomaterials with integrated structures of multiple protein types. Hydrogels that modulate internal porous structures provide a 3D microenvironment for encapsulated cells, making them promise for interface tissue repair. Currently, reduction of intrinsic immunogenicity and increase of bioactive extracellular matrix (ECM) secretion are issues to be considered in these materials. In this study, gelatin methacrylate (GelMA) hydrogel is used to encapsulate chondrocytes and construct a phase transition 3D cell culture system (PTCC) by utilizing the thermosensitivity of gelatin microspheres to create micropores within the hydrogel. The types of bioactive extracellular matrix protein formation by chondrocytes encapsulated in hydrogels are investigated in vitro. After 28 days of culture, GelMA PTCC forms an extracellular matrix predominantly composed of collagen type II, collagen type I, and fibronectin. After decellularization, the protein types and mechanical properties are well preserved, fabricating a decellularized tissue-engineered extracellular matrix and GelMA hydrogel interpenetrating network hydrogel (dECM-GelMA IPN) consisting of GelMA hydrogel as the first-level network and the ECM secreted by chondrocytes as the second-level network. This material has the potential to mediate the repair and regeneration of tendon-bone interface tissues with multiple protein types.


Subject(s)
Gelatin , Hydrogels , Hydrogels/chemistry , Gelatin/chemistry , Biocompatible Materials/chemistry , Tissue Engineering , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Methacrylates , Cell Culture Techniques, Three Dimensional , Tissue Scaffolds/chemistry
7.
Biomaterials ; 304: 122420, 2024 01.
Article in English | MEDLINE | ID: mdl-38048743

ABSTRACT

Complications can arise from damaging or removing lymph nodes after surgeries for malignant tumours. Our team has developed an innovative solution to recreate lymph nodes via an engineering approach. Using a Type II collagen scaffold coated with B cell membranes for the sake of attracting T cells in different regions, we could mimic the thymus-dependent and thymus-independent areas in vitro. This engineering strategy based on biophysical mimicry has a great potential for clinical applications. By further conjugating biological signals, anti-CD3/28, onto the scaffold coated with the B cell membrane, we achieved an 11.6-fold expansion of T cells within 14 days of in vitro culture while ensuring their activity, phenotype homeostasis, and differentiation capacity kept intact. Artificial lymph nodes had excellent biocompatibility and caused no pathological or physiological adverse effects after implantation into C57BL6 mice. In vivo assays also demonstrated that this artificial lymph node system positively adhered to omental tissues, creating an environment that fostered T cell growth and prevented cellular failure and death. Additionally, it induced vascular and lymphatic vessel invasion, which was beneficial to the migration and circulation of T cells between this system and peripheral blood. Due to the porous collagen fibre structure, it also facilitated the infiltration of host immune cells. This work opens new avenues to immune organ regeneration via a tissue engineering approach.


Subject(s)
Collagen , Tissue Engineering , Animals , Mice , Porosity , Mice, Inbred C57BL , Collagen/chemistry , Cell Membrane , Lymph Nodes/metabolism , Tissue Scaffolds/chemistry
8.
Adv Mater ; : e2302985, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37558506

ABSTRACT

Catechins from green tea are one of the most effective natural compounds for cancer chemoprevention and have attracted extensive research. Cancer cell-selective apoptosis-inducing properties of catechins depend on efficient intracellular delivery. However, the low bioavailability limits the application of catechins. Herein, a nano-scaled micellar composite composed of catechin-functionalized cationic lipopolymer and serum albumin is constructed. Cationic liposomes tend to accumulate in the pulmonary microvasculature due to electrostatic effects and are able to deliver the micellar system intracellularly, thus improving the bioavailability of catechins. Albumin in the system acts as a biocompatible anti-plasma absorbent, forming complexes with positively charged lipopolymer under electrostatic interactions, contributing to prolonged in vivo retention. The physicochemical properties of the nano-micellar complexes are characterized, and the antitumor properties of catechin-functionalized materials are confirmed by reactive oxygen species (ROS), caspase-3, and cell apoptosis measurements. The role of each functional module, cationic polymeric liposome, and albumin is revealed by cell penetration, in vivo animal assays, etc. This multicomponent micellar nanocomposite has the potential to become an effective vehicle for the treatment of lung diseases such as pneumonia, lung tumors, sepsis-induced lung injury, etc. This study also demonstrates that it is a great strategy to create a delivery system that is both tissue-targeted and biologically active by combining cationic liposomes with the native bioactive compound catechins.

9.
Int J Bioprint ; 9(4): 732, 2023.
Article in English | MEDLINE | ID: mdl-37323503

ABSTRACT

Aging is inevitable, and how to age healthily is a key concern. Additive manufacturing offers many solutions to this problem. In this paper, we first briefly introduce various 3D printing technologies commonly used in the biomedical field, particularly in aging research and aging care. Next, we closely examine aging-related health conditions of nervous system, musculoskeletal system, cardiovascular system, and digestive system with a focus on the application of 3D printing in these fields, including the creation of in vitro models and implants, production of drugs and drug delivery systems, and fabrication of rehabilitation and assistive medical devices. Finally, the opportunities, challenges, and prospects of 3D printing in the field of aging are discussed.

11.
Biomed Mater ; 18(3)2023 03 27.
Article in English | MEDLINE | ID: mdl-36971663

ABSTRACT

Traditional joint replacement surgery faces the risk of enormous trauma and secondary revision while using medication to relieve symptoms can cause bone thinning, weight gain and interference with the patient's pain signalling. Medical research has therefore focused on minimally invasive solutions for implanting tissue-engineered scaffolds to induce cartilage regeneration and repair. In cartilage tissue engineering, there are still technical barriers to seed cells, scaffold construction techniques, mechanical properties, and the regulation of the internal environment on the transplanted material. This issue focuses on the development of cartilage repair, cutting-edge discoveries, manufacturing technologies, and the current technological queries still faced in cartilage regenerative medicine research. The articles in this collection cover the coordination of physical and biochemical signals, genes, and regulations by the extracellular environment.


Subject(s)
Biocompatible Materials , Cartilage , Humans , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Regenerative Medicine
12.
Tissue Eng Part B Rev ; 29(5): 473-490, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36964757

ABSTRACT

Articular cartilage defects significantly compromise the quality of life in the global population. Although many strategies are needed to repair articular cartilage, including microfracture, autologous osteochondral transplantation, and osteochondral allograft, the therapeutic effects remain suboptimal. In recent years, with the development of cartilage tissue engineering, scientists have continuously improved the formulations of therapeutic cells, biomaterial-based scaffolds, and biological factors, which have opened new avenues for better therapeutics of cartilage lesions. This review focuses on advances in cartilage tissue engineering, particularly in preclinical trials and clinical applications, prospects, and challenges.

13.
Acta Biomater ; 161: 67-79, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36754271

ABSTRACT

Hematopoietic stem cell (HSC) transplantation remains the most effective therapy for hematologic and lymphoid disorders. However, as the primary therapeutic cells, the source of HSCs has been limited due to the scarcity of matched donors and difficulties in ex vivo expansion. Here, we described a facile method to attempt the expansion of HSCs in vitro through a porous alginate hydrogel-based 3D culture system. We used gelatin powders as the porogen to create submillimeter-scaled pores in alginate gel bulk while pre-embedding naïve HSCs in the gel phase. The results indicated that this porous hydrogel system performed significantly better than those cultured via conventional suspension or encapsulation in non-porous alginate hydrogels in maintaining the phenotype and renewability of HSCs. Only the porous hydrogel system achieved a two-fold growth of CD34+ cells within seven days of culture, while the number of CD34+ cells in the suspension system and nonporous hydrogel showed different degrees of attenuation. The expansion efficiency of the porous hydrogel for CD34+CD38- cells was more than 2.2 times that of the other two systems. Mechanistic study via biophysical analysis revealed that the porous alginate system was competent to reduce the electron capture caused by biomaterials, decrease cellular oxygen stress, avoid oxidative protection, thus maintaining the cellular phenotype of the CD34+ cells. The transcriptomic analysis further suggested that the porous alginate system also upregulated the TNF signaling pathway and activated the NF-κB signaling pathway to promote the CD34+ cells' survival and maintain cellular homeostasis so that renewability was substantially favoured. STATEMENT OF SIGNIFICANCE: • The reported porous hydrogel system performs significantly better in terms of maintaining the phenotype and renewability of HSCs than those cultured via conventional suspension or encapsulation in non-porous alginate hydrogel. • The reported porous alginate system is competent to reduce the electron capture caused by biomaterials, decrease cellular oxygen stress, avoid oxidative protection, and therefore maintain the cellular phenotype of the CD34+ cells. • The reported porous alginate system can also upregulate the TNF signaling pathway and activate the NF-κB signaling pathway to promote the CD34+ cells' survival and maintain cellular homeostasis so that the renewability is substantially favored..


Subject(s)
Hematopoietic Stem Cells , NF-kappa B , Cells, Cultured , NF-kappa B/metabolism , Hydrogels/pharmacology , Hydrogels/metabolism , Biocompatible Materials/metabolism , Alginates/pharmacology , Oxygen/metabolism , Antigens, CD34/metabolism , Cell Differentiation , Fetal Blood
14.
Adv Healthc Mater ; 12(13): e2202814, 2023 05.
Article in English | MEDLINE | ID: mdl-36707970

ABSTRACT

Due to the safety issue and poor underwater adhesion of current commercially available bioadhesives, they are hard to apply to in vivo physiological environments and more diverse medical use conditions. In this study, a novel and facile bioadhesive for underwater medical applications are designed based on the coacervation of electrostatic interactions and hydrophobic interactions, with the introduction of catechin as a provider of catechol moieties for adhesion to surrounding tissues. The orange-colored bio-adhesive, named PcC, is generated within seconds by mixing catechin-modified chondroitin sulfate and cholesterol chloroformate-modified polyethyleneimine with agitation. In vitro mechanical measurements prove that this novel PcC bio-adhesive is superior in underwater adhesion performance when applied to cartilage. Animal experiments in a rat mastectomy model and rat cartilage graft implantation model demonstrate its potential for diverse medical purposes, such as closing surgical incisions, reducing the formation of seroma, and tissue adhesive applied in orthopedic or cartilage surgery.


Subject(s)
Catechin , Tissue Adhesives , Rats , Animals , Tissue Adhesives/chemistry , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/chemistry , Polyethyleneimine , Mastectomy , Adhesives/chemistry
15.
Acta Pharmacol Sin ; 44(1): 32-43, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35896696

ABSTRACT

Inflammation is one of the pathogenic processes in Parkinson's disease (PD). Dopamine receptor agonist pramipexole (PPX) is extensively used for PD treatment in clinics. A number of studies show that PPX exerts neuroprotection on dopaminergic (DA) neurons, but the molecular mechanisms underlying the protective effects of PPX on DA neurons are not fully elucidated. In the present study, we investigated whether PPX modulated PD-related neuroinflammation and underlying mechanisms. PD model was established in mice by bilateral striatum injection of lipopolyssaccharide (LPS). The mice were administered PPX (0.5 mg·kg-1·d-1, i.p.) 3 days before LPS injection, and for 3 or 21 days after surgery, respectively, for biochemical and histological analyses. We showed that PPX administration significantly alleviated the loss of DA neurons, and suppressed the astrocyte activation and levels of proinflammatory cytokine IL-1ß in the substantia nigra of LPS-injected mice. Furthermore, PPX administration significantly decreased the expression of NLRP3 inflammasome-associated proteins, i.e., cleaved forms of caspase-1, IL-1ß, and apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) in the striatum. These results were validated in LPS+ATP-stimulated primary mouse astrocytes in vitro. Remarkably, we showed that PPX (100-400 µM) dose-dependently enhanced the autophagy activity in the astrocytes evidenced by the elevations in LC3-II and BECN1 protein expression, as well as the increase of GFP-LC3 puncta formation. The opposite effects of PPX on astrocytic NLRP3 inflammasome and autophagy were eliminated by Drd3 depletion. Moreover, we demonstrated that both pretreatment of astrocytes with autophagy inhibitor chloroquine (40 µM) in vitro and astrocyte-specific Atg5 knockdown in vivo blocked PPX-caused inhibition on NLRP3 inflammasome and protection against DA neuron damage. Altogether, this study demonstrates an anti-neuroinflammatory activity of PPX via a Drd3-dependent enhancement of autophagy activity in astrocytes, and reveals a new mechanism for the beneficial effect of PPX in PD therapy.


Subject(s)
Parkinson Disease , Mice , Animals , Pramipexole/therapeutic use , Pramipexole/metabolism , Pramipexole/pharmacology , Parkinson Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Astrocytes/metabolism , Lipopolysaccharides/pharmacology , Autophagy , Mice, Inbred C57BL
16.
Mater Today Bio ; 23: 100893, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38161510

ABSTRACT

Endochondral ossification (ECO) is a form of bone formation whereby the newly deposited bone replaces the cartilage template. A decellularized artificial cartilage graft (dLhCG), which is composed of hyaline cartilage matrixes, has been developed in our previous study. Herein, the osteogenesis of bone marrow-derived MSCs in the dLhCG through chondrogenic differentiation, chondrocyte hypertrophy, and subsequent transdifferentiation induction has been investigated by simulating the physiological processes of ECO for repairing critical-sized bone defects. The MSCs were recellularized into dLhCGs and subsequently allowed to undergo a 14-day proliferation period (mrLhCG). Following this, the mrLhCG constructs were subjected to two distinct differentiation induction protocols to achieve osteogenic differentiation: chondrogenic medium followed by chondrocytes culture medium with a high concentration of fetal bovine serum (CGCC group) and canonical osteogenesis inducing medium (OI group). The formation of a newly developed artificial bone graft, ossified dLhCG (OsLhCG), as well as its capability of aiding bone defect reconstruction were characterized by in vitro and in vivo trials, such as mRNA sequencing, quantitative real-time PCR (qPCR), immunohistochemistry, the greater omentum implantation in nude mice, and repair for the critical-sized femoral defects in rats. The results reveal that the differentiation induction of MSCs in the CGCC group can realize in vitro ECO through chondrogenic differentiation, hypertrophy, and transdifferentiation, while the MSCs in the OI group, as expected, realize ossification through direct osteogenic differentiation. The angiogenesis and osteogenesis of OsLhCG were proved by being implanted into the greater omentum of nude mice. Besides, the OsLhCG exhibits the capability to achieve the repair of critical-size femoral defects.

17.
Ann Transl Med ; 10(22): 1218, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36544667

ABSTRACT

Background: Neuroinflammation mediated by microglia plays a key role in the pathogenesis of Parkinson's disease (PD), and our previous studies showed this was significantly inhibited by enhanced autophagy. In the autophagy pathway, Bcl2-associated athanogene (BAG)3 is a prominent co-chaperone, and we have shown BAG3 can regulate autophagy to clear the PD pathogenic protein α-synuclein. However, the connection between BAG3 and microglia mediated neuroinflammation is not clear. Methods: In this study, we explored whether BAG3 regulated related neuroinflammation and its original mechanism in PD. An inflammatory model of PD was established by injecting adeno-associated virus (AAV)-BAG3 into the bilateral striatum of C57BL/6 male mice to induce overexpression of BAG3, followed by injection of lipopolysaccharide (LPS). The striatum was extracted at 3 days after injection of LPS for Western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR), and immunohistochemical staining was performed at 21 days after injection. At the same time, LPS was used to induce activation of BV2 cells to verify the effect of BAG3 in vitro. Results: Overexpression of BAG3 reduced LPS-induced pyroptosis by reducing activation of caspase-1, the NOD-like receptor family, and the pyrin domain-containing 3 (NLRP3) inflammasome, and by release of interleukin (IL)-1ß and tumor necrosis factor (TNF)-α. The LPS-induced inflammatory environment inhibits autophagy, and overexpression of BAG3 can restore autophagy, which may be the mechanism by which BAG3 reduces neuronal inflammation in PD. Conclusions: Our results demonstrate BAG3 promotes autophagy and suppresses NLRP3 inflammasome formation in PD.

18.
Mar Drugs ; 20(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36355025

ABSTRACT

To explore the application of chitosan-gentamicin conjugate (CS-GT) in inhibiting Vibrio parahaemolyticus (V. parahaemolyticus), which is an important pathogen in aquatic animals worldwide, the antimicrobial activity of CS-GT and the effects of a CS-GT dose on the intestine histopathology and intestinal flora of V. parahaemolyticus-infected shrimps were explored. The results showed that CS-GT possessed broad-spectrum antibacterial activity, with minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and half inhibitory concentration (IC50) of 20.00 ± 0.01, 75.00 ± 0.02 and 18.72 ± 3.17 µg/mL for V. parahaemolyticus, respectively. Further scanning electron microscope and cell membrane damage analyses displayed that the electrostatic interaction of CS-GT with cell membrane strengthened after CS grafted GT, resulting in leakage of nucleic acid and electrolytes of V. parahaemolyticus. On the other hand, histopathology investigation indicated that high (100 mg/kg) and medium (50 mg/kg) doses of CS-GT could alleviate the injury of a shrimp's intestine caused by V. parahaemolyticus. Further 16S rRNA gene sequencing analysis found high and medium dose of CS-GT could effectively inhabit V. parahaemolyticus invasion and reduce intestinal dysfunction. In conclusion, CS-GT possesses good antibacterial activity and could protect shrimps from pathogenic bacteria infection.


Subject(s)
Chitosan , Gastrointestinal Microbiome , Penaeidae , Vibrio parahaemolyticus , Animals , Chitosan/pharmacology , Chitosan/metabolism , Gentamicins/pharmacology , RNA, Ribosomal, 16S/metabolism , Penaeidae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
19.
Biomaterials ; 291: 121908, 2022 12.
Article in English | MEDLINE | ID: mdl-36384085

ABSTRACT

Uncontrolled hemorrhage caused by trauma to internal organs or major arteries poses critical threats to lives. However, rapid hemostasis followed by tissue repair remains an intractable challenge in surgery owing to the lack of ideal internal-use adhesives that can achieve fast and robust wet adhesion and accelerate wound healing. Herein, we develop a robust hemostatic bioadhesive (CAGA) from novel highly-branched aminoethyl gelatin with end-grafted abundant catechol (Gel-AE-Ca). The unique chemical structure of Gel-AE-Ca makes CAGA capable of gelling on wet tissues via synergetic cross-linking of catechol-Fe3+ chelation and horseradish peroxidase (HRP)/H2O2-triggered covalent bonds using a dual-channel needle, meeting the key demands of internal medical applications (e.g., instant and strong wet adhesion, injectability, biocompatibility, self-healing, stretching flexibility, infection resistance, and proper biodegradability). It exhibits rapid gelation within 10 s and robust wet tissue adhesion up to 115.0 ± 13.1 kPa of shear strength and 245.0 ± 33.8 mm Hg of sealing strength. In vivo trials demonstrate that CAGA can not only effectively seal anastomosis of the carotid artery, but achieve rapid hemostasis on the sites of liver incisions and penetrating cardiac wounds within 10 s. The wound closure by CAGA and its timely biodegradation promote wound healing of the vital organs.


Subject(s)
Hydrogen Peroxide , Wound Healing , Catechols , Arteries , Hemostasis
20.
Preprint in English | bioRxiv | ID: ppbiorxiv-495215

ABSTRACT

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines has greatly reduced coronavirus disease 2019 (COVID-19)-related deaths and hospitalizations, but waning immunity and the emergence of variants capable of immune escape indicate the need for novel SARS-CoV-2 vaccines. An intranasal parainfluenza virus 5 (PIV5)-vectored COVID-19 vaccine CVXGA1 has been proven efficacious in animal models and blocks contact transmission of SARS-CoV-2 in ferrets. CVXGA1 vaccine is currently in human clinical trials in the United States. This work investigates the immunogenicity and efficacy of CVXGA1 and other PIV5-vectored vaccines expressing additional antigen SARS-CoV-2 nucleoprotein (N) or SARS-CoV-2 variant spike (S) proteins of beta, delta, gamma, and omicron variants against homologous and heterologous challenges in hamsters. A single intranasal dose of CVXGA1 induces neutralizing antibodies against SARS-CoV-2 WA1 (ancestral), delta variant, and omicron variant and protects against both homologous and heterologous virus challenges. Compared to mRNA COVID-19 vaccine, neutralizing antibody titers induced by CVXGA1 were well-maintained over time. When administered as a boost following two doses of a mRNA COVID-19 vaccine, PIV5-vectored vaccines expressing the S protein from WA1 (CVXGA1), delta, or omicron variants generate higher levels of cross-reactive neutralizing antibodies compared to three doses of a mRNA vaccine. In addition to the S protein, the N protein provides added protection as assessed by the highest body weight gain post-challenge infection. Our data indicates that PIV5-vectored COVID-19 vaccines, such as CVXGA1, can serve as booster vaccines against emerging variants. ImportanceWith emerging new variants of concern (VOC), SARS-CoV 2 continues to be a major threat to human health. Approved COVID-19 vaccines have been less effective against these emerging VOCs. This work demonstrates the protective efficacy, and strong boosting effect, of a new intranasal viral-vectored vaccine against SARS-CoV-2 variants in hamsters.

SELECTION OF CITATIONS
SEARCH DETAIL
...