Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 19(5): e0303095, 2024.
Article in English | MEDLINE | ID: mdl-38776281

ABSTRACT

The growing burden of expired medicines contributes to environmental contamination and landfill waste accumulation. Medicinal honey, with its non-toxic nature and potentially long shelf-life, represents a promising and underutilised therapeutic that avoids some of these issues. However, limited knowledge on how its antimicrobial properties change over time combined with a lack of reliable processes in the honey industry for measuring antimicrobial potential, hinder its clinical adoption. Using a diverse selection of 30 Australian honey samples collected between 2005 and 2007, we comprehensively evaluated their antibacterial and antifungal activity and pertinent physical and chemical properties with the aims of assessing the effect of long-term storage on activity, pinpointing factors associated with antimicrobial efficacy, and establishing robust assessment methods. Minimum inhibitory concentration (MIC) assays proved superior to the standard phenol equivalence assay in capturing the full range of antimicrobial activity present in honey. Correlations between activity and a range of physical and chemical properties uncovered significant associations, with hydrogen peroxide, antioxidant content, and water activity emerging as key indicators in non-Leptospermum honey. However, the complex nature and the diverse composition of honey samples precludes the use of high-throughput chemical tests for accurately assessing this activity, and direct assessment using live microorganisms remains the most economical and reliable method. We provide recommendations for different methods of assaying various honey properties, taking into account their accuracy along with technical difficulty and safety considerations. All Leptospermum and fourteen of seventeen non-Leptospermum honey samples retained at least some antimicrobial properties after 15-17 years of storage, suggesting that honey can remain active for extended periods. Overall, the results of this study will help industry meet the growing demand for high-quality, medicinally active honey while ensuring accurate assessment of its antimicrobial potential.


Subject(s)
Honey , Microbial Sensitivity Tests , Honey/analysis , Australia , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Antioxidants/pharmacology , Antioxidants/analysis , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/analysis
2.
PeerJ ; 11: e15645, 2023.
Article in English | MEDLINE | ID: mdl-37520253

ABSTRACT

Honey produced by the Australian honeypot ant (Camponotus inflatus) is valued nutritionally and medicinally by Indigenous peoples, but its antimicrobial activity has never been formally studied. Here, we determine the activity of honeypot ant honey (HPAH) against a panel of bacterial and fungal pathogens, investigate its chemical properties, and profile the bacterial and fungal microbiome of the honeypot ant for the first time. We found HPAH to have strong total activity against Staphylococcus aureus but not against other bacteria, and strong non-peroxide activity against Cryptococcus and Aspergillus sp. When compared with therapeutic-grade jarrah and manuka honey produced by honey bees, we found HPAH to have a markedly different antimicrobial activity and chemical properties, suggesting HPAH has a unique mode of antimicrobial action. We found the bacterial microbiome of honeypot ants to be dominated by the known endosymbiont genus Candidatus Blochmannia (99.75%), and the fungal microbiome to be dominated by the plant-associated genus Neocelosporium (92.77%). This study demonstrates that HPAH has unique antimicrobial characteristics that validate its therapeutic use by Indigenous peoples and may provide a lead for the discovery of novel antimicrobial compounds.


Subject(s)
Ants , Bees , Animals , Australia , Enterobacteriaceae , Bacteria
3.
Microbiol Spectr ; 11(4): e0074223, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37289060

ABSTRACT

Honey bees (Apis mellifera) face increasing threats to their health, particularly from the degradation of floral resources and chronic pesticide exposure. The properties of honey and the bee gut microbiome are known to both affect and be affected by bee health. Using samples from healthy hives and hives showing signs of stress from a single apiary with access to the same floral resources, we profiled the antimicrobial activity and chemical properties of honey and determined the bacterial and fungal microbiome of the bee gut and the hive environment. We found honey from healthy hives was significantly more active than honey from stressed hives, with increased phenolics and antioxidant content linked to higher antimicrobial activity. The bacterial microbiome was more diverse in stressed hives, suggesting they may have less capacity to exclude potential pathogens. Finally, bees from healthy and stressed hives had significant differences in core and opportunistically pathogenic taxa in gut samples. Our results emphasize the need for understanding and proactively managing bee health. IMPORTANCE Honey bees serve as pollinators for many plants and crops worldwide and produce valuable hive products such as honey and wax. Various sources of stress can disrupt honey bee colonies, affecting their health and productivity. Growing evidence suggests that honey is vitally important to hive functioning and overall health. In this study, we determined the antimicrobial activity and chemical properties of honey from healthy hives and hives showing signs of stress, finding that honey from healthy hives was significantly more antimicrobial, with increased phenolics and antioxidant content. We next profiled the bacterial and fungal microbiome of the bee gut and the hive environment, finding significant differences between healthy and stressed hives. Our results underscore the need for greater understanding in this area, as we found even apparently minor stress can have implications for overall hive fitness as well as the economic potential of hive products.


Subject(s)
Anti-Infective Agents , Gastrointestinal Microbiome , Microbiota , Urticaria , Bees , Animals , Antioxidants , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...