Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 19365, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852928

ABSTRACT

Rare diseases are usually chronically debilitating or even life-threatening with diagnostic and therapeutic challenges in current clinical practice. It has been estimated that 80% of rare diseases are genetic in origin, and thus genome sequencing-based diagnosis offers a promising alternative for rare-disease management. In this study, 79 individuals from 16 independent families were performed for whole-genome sequencing (WGS) in an effort to identify the causative mutations for 16 distinct rare diseases that are largely clinically intractable. Comprehensive analysis of variations, including simple nucleotide variants (SNVs), copy-number variations (CNVs), and structural variations (SVs), was implemented using the WGS data. A flexible analysis pipeline that allowed a certain degree of misclassification of disease status was developed to facilitate the identification of causative variants. As a result, disease-causing variants were identified in 10 of the 16 investigated diseases, yielding a diagnostic rate of 62.5%. Additionally, new potentially pathogenic variants were discovered for two disorders, including IGF2/INS-IGF2 in mitochondrial disease and FBN3 in Klippel-Trenaunay-Weber syndrome. Our WGS analysis not only detected a CNV associated with 3p deletion syndrome but also captured a simple sequence repeat (SSR) variation associated with Machado-Joseph disease. To our knowledge, this is the first time the clinical WGS analysis of short-read sequences has been used successfully to identify a causative SSR variation that perfectly segregates with a repeat expansion disorder. After the WGS analysis, we confirmed the initial diagnosis for three of 10 established disorders and modified or corrected the initial diagnosis for the remaining seven disorders. In summary, clinical WGS is a powerful tool for the diagnosis of rare diseases, and its diagnostic clarity at molecular levels offers important benefits for the participating families.


Subject(s)
Asian People/genetics , Rare Diseases/diagnosis , Rare Diseases/genetics , Undiagnosed Diseases/diagnosis , Undiagnosed Diseases/genetics , Whole Genome Sequencing , Base Sequence , Cohort Studies , DNA Copy Number Variations/genetics , Family , Female , Humans , Male , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Mutation/genetics , Pedigree
2.
J Cancer ; 7(11): 1441-51, 2016.
Article in English | MEDLINE | ID: mdl-27471560

ABSTRACT

Ovarian carcinoma is the most lethal gynecological malignancy worldwide. Recent advance in genomic/epigenomic researches will impact on our prevention, detection and intervention on ovarian carcinoma. Detection of germline mutations in BRCA1/BRCA2, mismatch repair genes, and other genes in the homologous recombination/DNA repair pathway propelled the genetic surveillance of most hereditary ovarian carcinomas. Germline or somatic mutations in SMARCA4 in familial and sporadic small cell carcinoma of the ovary, hypercalcemia type, lead to our recognition on this rare aggressive tumor as a new entity of the atypical teratoma/rhaboid tumor family. Genome-wide association studies have identified many genetic variants that will contribute to the evaluation of ovarian carcinoma risk and prognostic prediction. Whole exome sequencing and whole genome sequencing discovered rare mutations in other drive mutations except p53, but demonstrated the presence of high genomic heterogeneity and adaptability in the genetic evolution of high grade ovarian serous carcinomas that occurs in cancer progression and chemotherapy. Gene mutations, copy number aberrations and DNA methylations provided promising biomarkers for the detection, diagnosis, prognosis, therapy response and targets of ovarian cancer. These findings underscore the necessity to translate these potential biomarkers into clinical practice.

3.
J Pharmacol Exp Ther ; 339(1): 238-47, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21765040

ABSTRACT

Compared with traditional cytotoxic cancer therapy, therapy-induced cancer cell senescence attracts much interest because it is similarly effective, has fewer side effects, and is more efficiently cleared by immune cells. In this study, we demonstrate that unlike caffeic acid phenethyl ester, caffeic acid 3,4-dihydroxy-phenethyl ester (CADPE), which is isolated from the medicinal plants Sarcandra glabra and Teucrium pilosum, inhibits human cancer cell growth and colony formation by inducing cancer cell senescence, not apoptosis. CADPE induces cell senescence and morphology changes by increasing cellular size and cytoplasmic granularity, enhancing senescence-associated ß-galactosidase activity and differentiated embryo-chondrocyte expressed gene 1 expression, and blocking cell-cycle arrest in the G(1) phase. To help understand the underlying mechanisms, we show that CADPE significantly suppressed the expression of Twist1 and led to the up-regulation of rat sarcoma, p53, p21(WAF1/CIP1), and p16(INK4a) proteins in a dose-dependent manner, resulting in the hypophosphorylation of retinoblastoma protein. Furthermore, overexpression of Twist1 prevented CADPE-induced cell senescence in tumor cells. Therefore, our studies provide evidence for a novel role of CADPE in cancer cell senescence by targeting the Twist1-dependent senescence signaling pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Caffeic Acids/pharmacology , Cellular Senescence/drug effects , Twist-Related Protein 1/antagonists & inhibitors , Annexin A5 , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p21 , Dose-Response Relationship, Drug , G1 Phase/drug effects , Genes, ras , Humans , Phosphorylation , Retinoblastoma Protein/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Tumor Stem Cell Assay , Twist-Related Protein 1/genetics , Twist-Related Protein 1/physiology , Up-Regulation , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...