Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.335
Filter
1.
Am J Hypertens ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828480

ABSTRACT

BACKGROUND: This study aims to explore the association between a healthy lifestyle and abnormal ambulatory blood pressure (ABP) in Chinese youths. METHODS: A school-based sample of 1,296 college students was investigated. A lifestyle score was calculated by synthesizing five lifestyle factors, including smoking, alcohol consumption, diet, physical activity, and sleeping. The total score ranged from 0 to 5, with a higher score indicating a healthier lifestyle. This score was then divided into three categories representing low adherence to a healthy lifestyle (0-2), medium adherence (3), and high adherence (4-5). Abnormal 24-hour blood pressure (BP) was defined as systolic BP (SBP) ≥ 130 mmHg and/or diastolic BP (DBP) ≥ 80 mmHg. Abnormal daytime BP was determined as daytime SBP ≥ 135 mmHg and/or DBP ≥ 85 mmHg, while abnormal nighttime BP was characterized as nighttime SBP ≥ 120 mmHg and/or DBP ≥ 70 mmHg. We assessed the associations using the binomial regression model. RESULTS: Mean age was 18.81 years, and 74.5% were women. The prevalence of abnormal 24-hour BP, daytime BP, and nighttime BP are 4.2%, 3.7%, and 9.0%, respectively. We found that participants with high level of adherence to a healthy lifestyle had a significantly lower prevalence of abnormal 24-hour BP [prevalence ratios (PR) = 0.15, 95% CI: 0.05, 0.48] and abnormal daytime BP (PR = 0.16, 95%CI: 0.05, 0.52), when compared to those with low level of adherence and after adjusting for the potential covariates. CONCLUSIONS: A healthier lifestyle is associated with better ambulatory BP profile among youths.

2.
Front Microbiol ; 15: 1373597, 2024.
Article in English | MEDLINE | ID: mdl-38841055

ABSTRACT

Shiraia bambusicola is a typical parasitic medicinal fungus of the family Shiraiaceae. The fruiting bodies of S. bambusicola cannot be cultivated artificially, and active substances can be effectively produced via fermentation. The mechanism of conidia production is a research hotspot in the industrial utilization and growth development of S. bambusicola. This study is the first to systematically study the proteomics of conidiospore formation from S. bambusicola. Near-spherical conidia were observed and identified by internal transcribed spacer (ITS) sequence detection. A total of 2,840 proteins were identified and 1,976 proteins were quantified in the mycelia and conidia of S. bambusicola. Compared with mycelia, 445 proteins were differentially expressed in the conidia of S. bambusicola, with 165 proteins being upregulated and 280 proteins being downregulated. The Gene Ontology (GO) annotation results of differential proteomics showed that the biological process of S. bambusicola sporulation is complex. The Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis showed that the differential proteins were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and other processes. Our in-depth speculative analysis showed that proteins related to carbohydrate metabolism were differentially expressed in conidiospore formation of S. bambusicola, suggesting the involvement of saccharides. Conidiation may increase the synthesis and release of ethanol and polysaccharide proteins such as glycoside hydrolase (GH), suppress host immunity, and facilitate S. bambusicola to infect and colonize of the host. In-depth analysis of differential proteomes will help reveal the molecular mechanism underlying the conidiospore formation of S. bambusicola, which has strong theoretical and practical significance.

3.
Hellenic J Cardiol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795773

ABSTRACT

AIM: Estimated pulse wave velocity (ePWV), a newly established arterial stiffness (AS) parameter, predicts development of cardiovascular disease (CVD) and death in general population or patients with CVD risk factors. However, whether ePWV is associated with adverse outcome in heart failure with preserved ejection fraction (HFpEF) patients remains unknown. Our study aimed to evaluate the prognostic value of ePWV on clinical outcomes in HFpEF. METHODS AND RESULTS: We analyzed HFpEF participants from the Americas in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial with available baseline data (n = 1764). Cox proportional hazard model was used to explore the prognostic value of ePWV on the long-term clinical outcomes (all-cause mortality, cardiovascular mortality, all-cause hospitalization and heart failure hospitalization). Each ePWV increase by 1 m/s increased the risk for all-cause death by 16% (HR:1.16; 95% CI:1.10-1.23; P<0.001) and CVD mortality by 13% (HR:1.13; 95% CI:1.04-1.21; P=0.002) after adjusting for confounders. Patients were then grouped into 4 quartiles of ePWV. Our study indicated that the highest ePWV quartile (ePWV ≥12.806 m/s) was associated with increased risk of all-cause mortality (HR, 1.96; 95% CI, 1.43-2.69; P<0.001) and CVD mortality (HR, 1.72; 95% CI, 1.16-2.56; P=0.008) after adjusting for potential confounders. CONCLUSION: These results suggested ePWV is independently associated with increased all-cause mortality and CVD mortality in HFpEF patients, indicating ePWV is an appropriate predictor of prognosis in patients with HFpEF.

4.
BMC Cancer ; 24(1): 589, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745137

ABSTRACT

BACKGROUND: Evaluate the efficacy and safety of different chemotherapy regimens concurrent with radiotherapy in treating locally advanced cervical cancer (LACC). METHODS: Retrospective data was collected from LACC patients who were treated at our institution. These patients were categorized into three groups: the single-agent cisplatin (DDP) chemoradiotherapy group, the paclitaxel plus cisplatin (TP) chemoradiotherapy group, and the nanoparticle albumin-bound (nab-) paclitaxel combined with cisplatin (nPP) chemoradiotherapy group. The primary endpoints were overall survival (OS) and progression-free survival (PFS) and the secondary endpoints were objective response rate (ORR) and incidence of adverse events (AEs). RESULTS: A total of 124 patients were enrolled (32 in the DDP group, 41 in the TP group, and 51 in the nPP group). There were differences in OS (P = 0.041, HR 0.527, 95% CI 0.314-0.884) and PFS (P = 0.003, HR 0.517, 95% CI 0.343-0.779) between the three groups. Notably, the 2-year OS rate was significantly higher in the nPP group compared to the DDP group (92.2% vs. 85.4%, P = 0.012). The 2-year PFS rates showed a marked increase in the TP group (78.0% vs. 59.4%, P = 0.048) and the nPP group (88.2% vs. 59.4%, P = 0.001) relative to the DPP group, with multiple comparisons indicating that the 2-year PFS rate was significantly superior in the nPP group versus the DDP group (88.2% vs. 59.4%, P = 0.001). Moreover, the ORR was also significantly higher in the nPP group than in the DDP group (P = 0.013); and no statistically significant differences were found in the incidence of AEs among the groups (P > 0.05). CONCLUSIONS: In LACC treatment, the two cisplatin-based doublet chemotherapy regimens are associated with better outcomes, with the nab-paclitaxel plus cisplatin regimen showing better efficacy than the paclitaxel plus cisplatin regimen. Furthermore, the AEs associated with these regimens were deemed tolerable. These findings could provide a reference for the clinical treatment of LACC. However, further prospective studies are needed to verify it.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Chemoradiotherapy , Cisplatin , Paclitaxel , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/mortality , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Female , Middle Aged , Chemoradiotherapy/methods , Chemoradiotherapy/adverse effects , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Paclitaxel/adverse effects , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Cisplatin/adverse effects , Adult , Aged , Treatment Outcome , Progression-Free Survival
5.
BMC Geriatr ; 24(1): 460, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797829

ABSTRACT

BACKGROUND: The aging global population is experiencing escalating challenges related to cognitive deficits and dementia. This study explored the interplay between pulmonary function, physical activity, and cognitive function in older U.S. adults to identify modifiable risk factors for cognitive decline. METHODS: Utilizing NHANES 2011-2012 data, we conducted a cross-sectional analysis of 729 participants aged ≥ 60 years. Cognitive function, peak expiratory flow (PEF), and physical activity were assessed. Weighted logistic regression and mediation analyses were employed to examine associations. RESULTS: The sample size was 729 (weighted mean [SD] age, 67.1 [5.3] years; 53.6% female participants). Preliminary correlation analysis indicated a positive correlation between the global cognitive score and physical activity (ß = 0.16; p < 0.001), recreational activity (ß = 0.22; p < 0.001), and PEF in percent predicted (PEF%) (ß = 0.18; p < 0.001). Compared to those with a PEF% >100%, the PEF% (80-100%) group (OR, 2.66; 95% CI, 1.34-5.29; p = 0.005) and PEF% <80% group (OR, 3.36; 95% CI, 1.67-6.76; p = 0.001) were significantly associated with higher cognitive deficits risk. Recreational activity meeting guidelines was linked to a lower risk of cognitive deficits (OR, 0.24; 95% CI, 0.10-0.57; p = 0.001). Mediation analysis demonstrated that PEF mediates the relationship between physical activity and cognitive function. CONCLUSION: This study revealed significant associations between lower PEF, diminished physical activity, and increased cognitive deficits in elderly individuals. The results supported the hypothesis that pulmonary function may mediate the connection between activity and cognitive health, emphasizing the importance of respiratory health in cognitive aging. Recognizing these associations is crucial for clinical care and public health policy aiming to mitigate cognitive decline in aging populations. While these findings are intriguing, validation through longitudinal design studies is deemed necessary.


Subject(s)
Aging , Cognition , Exercise , Humans , Female , Cross-Sectional Studies , Male , Aged , Peak Expiratory Flow Rate/physiology , Exercise/physiology , Exercise/psychology , Cognition/physiology , Aging/physiology , Aging/psychology , Middle Aged , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Nutrition Surveys/methods
6.
Environ Pollut ; 352: 124129, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729505

ABSTRACT

Human-imported pollutants could induce water black, changing microbial community structure and function. Employed 16S rRNA high-throughput sequencing, field-scale investigations and laboratory-scale experiments were successively conducted to reveal mechanistic insights into microbial community assembly and succession of black-odor waters (BOWs). In the field-scale investigation, livestock breeding wastewater (56.7 ± 3.2%) was the most critical microbial source. Moreover, fermentation (27.1 ± 4.4%) was found to be the dominant function. Combined with laboratory experiments, the critical environmental factors, such as total organic carbon (30-100 mg/L), ammonia nitrogen (2.5-9 mg/L), initial dissolved oxygen (2-8 mg/L) and chlorophyll a (0-90 mg/L), impacted the intensity of blackening. The differentiation of ecological niches within the microbial community played a significant role in driving the blackening speed. In laboratory-scale experiments, the microbial ecological niche determined the blackening timing and dominations of the stochastic processes in the microbial assembly process (88 - 51%). The three stages, including the anaerobic degradation stage, blackening stage and slow recovery stage, were proposed to understand the assembly of the microbial communities. These findings enhance our understanding of microorganisms in BOWs and provide valuable insights for detecting and managing heavily organic polluted waters.


Subject(s)
Microbiota , Wastewater , Wastewater/microbiology , Wastewater/chemistry , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/metabolism , Water Pollutants, Chemical/analysis , Water Microbiology
7.
iScience ; 27(4): 109635, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38623336

ABSTRACT

RNA velocity is a crucial tool for unraveling the trajectory of cellular responses. Several approaches, including ordinary differential equations and machine learning models, have been proposed to interpret velocity. However, the practicality of these methods is constrained by underlying assumptions. In this study, we introduce SymVelo, a dual-path framework that effectively integrates high- and low-dimensional information. Rigorous benchmarking and extensive studies demonstrate that SymVelo is capable of inferring differentiation trajectories in developing organs, analyzing gene responses to stimulation, and uncovering transcription dynamics. Moreover, the adaptable architecture of SymVelo enables customization to accommodate intricate data and diverse modalities in forthcoming research, thereby providing a promising avenue for advancing our understanding of cellular behavior.

8.
Commun Med (Lond) ; 4(1): 64, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575723

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) offers superb non-invasive, soft tissue imaging of the human body. However, extensive data sampling requirements severely restrict the spatiotemporal resolution achievable with MRI. This limits the modality's utility in real-time guidance applications, particularly for the rapidly growing MRI-guided radiation therapy approach to cancer treatment. Recent advances in artificial intelligence (AI) could reduce the trade-off between the spatial and the temporal resolution of MRI, thus increasing the clinical utility of the imaging modality. METHODS: We trained deep learning-based super-resolution neural networks to increase the spatial resolution of real-time MRI. We developed a framework to integrate neural networks directly onto a 1.0 T MRI-linac enabling real-time super-resolution imaging. We integrated this framework with the targeting system of the MRI-linac to demonstrate real-time beam adaptation with super-resolution-based imaging. We tested the integrated system using large publicly available datasets, healthy volunteer imaging, phantom imaging, and beam tracking experiments using bicubic interpolation as a baseline comparison. RESULTS: Deep learning-based super-resolution increases the spatial resolution of real-time MRI across a variety of experiments, offering measured performance benefits compared to bicubic interpolation. The temporal resolution is not compromised as measured by a real-time adaptation latency experiment. These two effects, an increase in the spatial resolution with a negligible decrease in the temporal resolution, leads to a net increase in the spatiotemporal resolution. CONCLUSIONS: Deployed super-resolution neural networks can increase the spatiotemporal resolution of real-time MRI. This has applications to domains such as MRI-guided radiation therapy and interventional procedures.


Magnetic resonance imaging (MRI) is a medical imaging modality that is used to image organs such as the brain, lungs, and liver as well as diseases such as cancer. MRI scans taken at high resolution are of overly long duration. This time constraint limits the accuracy of MRI-guided cancer radiation therapy, where imaging must be fast to adapt treatment to tumour motion. Here, we deployed artificial intelligence (AI) models to achieve fast and high detail MRI. We additionally validated our AI models across various scenarios. These AI-based models could potentially enable people with cancer to be treated with higher accuracy and precision.

9.
Small ; : e2310064, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607265

ABSTRACT

Limited by the strong oxidation environment and sluggish reconstruction process in oxygen evolution reaction (OER), designing rapid self-reconstruction with high activity and stability electrocatalysts is crucial to promoting anion exchange membrane (AEM) water electrolyzer. Herein, trace Fe/S-modified Ni oxyhydroxide (Fe/S-NiOOH/NF) nanowires are constructed via a simple in situ electrochemical oxidation strategy based on precipitation-dissolution equilibrium. In situ characterization techniques reveal that the successful introduction of Fe and S leads to lattice disorder and boosts favorable hydroxyl capture, accelerating the formation of highly active γ-NiOOH. The Density Functional Theory (DFT) calculations have also verified that the incorporation of Fe and S optimizes the electrons redistribution and the d-band center, decreasing the energy barrier of the rate-determining step (*O→*OOH). Benefited from the unique electronic structure and intermediate adsorption, the Fe/S-NiOOH/NF catalyst only requires the overpotential of 345 mV to reach the industrial current density of 1000 mA cm-2 for 120 h. Meanwhile, assembled AEM water electrolyzer (Fe/S-NiOOH//Pt/C-60 °C) can deliver 1000 mA cm-2 at a cell voltage of 2.24 V, operating at the average energy efficiency of 71% for 100 h. In summary, this work presents a rapid self-reconstruction strategy for high-performance AEM electrocatalysts for future hydrogen economy.

10.
Lancet ; 403(10438): 1808-1820, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38643776

ABSTRACT

China is home to the second largest population of children and adolescents in the world. Yet demographic shifts mean that the government must manage the challenge of fewer children with the needs of an ageing population, while considering the delicate tension between economic growth and environmental sustainability. We mapped the health problems and risks of contemporary school-aged children and adolescents in China against current national health policies. We involved multidisciplinary experts, including young people, with the aim of identifying actionable strategies and specific recommendations to promote child and adolescent health and wellbeing. Notwithstanding major improvements in their health over the past few decades, contemporary Chinese children and adolescents face distinct social challenges, including high academic pressures and youth unemployment, and new health concerns including obesity, mental health issues, and sexually transmitted infections. Inequality by gender, geography, and ethnicity remains a feature of health risks and outcomes. We identified a mismatch between current health determinants, risks and outcomes, and government policies. To promote the health of children and adolescents in China, we recommend a set of strategies that target government-led initiatives across the health, education, and community sectors, which aim to build supportive and responsive families, safe communities, and engaging and respectful learning environments. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Health Policy , Humans , Adolescent , China , Child , Male , Female , Health Services Needs and Demand , Adolescent Health , Child Health , East Asian People
11.
Analyst ; 149(10): 2801-2805, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38682955

ABSTRACT

Single-molecule localization microscopy (SMLM), a type of super-resolution fluorescence microscopy, has become a strong technique in the toolbox of chemists, biologists, physicists, and engineers in recent years for its unique ability to resolve characteristic features at the nanoscopic level. It drastically improves the resolution of optical microscopes beyond the diffraction limit, with which previously unresolvable structures can now be studied. Spectrally resolved super-resolution fluorescence microscopy via multiplexing of different fluorophores is one of the greatest advancements among SMLM techniques. However, current spectrally resolved SMLM (SR-SMLM) methodologies present low spatial resolution due to loss of photons, low throughput due to spectral interferences, or require complex optical systems. Here, we overcome these drawbacks by developing a SR-SMLM methodology using a color glass filter. It enables high throughput and improved photon usage for hyperspectral imaging at the nanoscopic level. Our methodology can readily distinguish fluorophores of close spectral emission and achieves sub-10 nm localization and sub-5 nm spectral precisions.

12.
Chemosphere ; 356: 141878, 2024 May.
Article in English | MEDLINE | ID: mdl-38582172

ABSTRACT

In this study, a sulfur-modified magnetic hydrochar was synthesized by grafting thiol-containing groups onto the sludge-derived hydrochar. The modified hydrochar exhibited effective adsorption of Cu2+, Pb2+, Zn2+, and Cd2+ over a wide pH range and in the presence of coexisting ions, and showed almost no secondary leaching in three acidic solutions. In the mult-metal ion system, the modified hydrochar exhibited maximum adsorption capacities were 39.38, 105.74, 26.53, and 38.11 mg g-1 for Cu2+, Pb2+, Zn2+, and Cd2+, respectively. However, the binding capacity and adsorption amount of modified hydrochar for metal ions were lower in the mult-metal ion system compared to the unit-metal ion system. Notably, Pb2+ showed a strong inhibitory effect on the adsorption of other heavy metal ions by modified hydrochar due to strong competition for xanthate functional groups. The Pb2+ occupied the xanthate and native functional groups (-OH, -NH2, and Fe-O etc.), leaving only a small amount of adsorption sites for Cu2+, Zn2+ and Cd2+. Simulation results further supported these findings, indicating that Pb2+ had the highest density profiles near the four functional groups, and the density profiles of the four heavy metals near the xanthate functional groups were greater compared to the other three functional groups. Furthermore, the SEM-EDS, TOF-SIMI, and XPS results indicated that modified hydrochar achieved excellent mineral binding mainly through electrostatic interaction, ion exchange, and chelation. Overall, these results highlight the sulfur-modified magnetic hydrochar as a highly efficient adsorbent for heavy metals in environmental applications.


Subject(s)
Metals, Heavy , Sewage , Water Pollutants, Chemical , Adsorption , Metals, Heavy/chemistry , Sewage/chemistry , Water Pollutants, Chemical/chemistry , Minerals/chemistry
13.
Asian J Psychiatr ; 96: 104032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574492

ABSTRACT

The efficacy and safety of deep transcranial magnetic stimulation (dTMS) in treating treatment-resistant depression (TRD) are unknown. Up to June 21, 2023, we conducted a systematic search for RCTs, and then extracted and synthesized data using random effects models. Five RCTs involving 507 patients with TRD (243 in the active dTMS group and 264 in the control group) were included in the present study. The active dTMS group showed significantly higher study-defined response rate (45.3% versus 24.2%, n = 507, risk ratio [RR] = 1.87, 95% confidence interval [CI]: 1.21-2.91, I2 = 53%; P = 0.005) and study-defined remission rate (38.3% versus 14.4%, n = 507, RR = 2.37, 95%CI: 1.30-4.32, I2 = 58%; P = 0.005) and superiority in improving depressive symptoms (n = 507, standardized mean difference = -0.65, 95%CI: -1.11--0.18, I2 = 82%; P = 0.006) than the control group. In terms of cognitive functions, no significant differences were observed between the two groups. The two groups also showed similar rates of other adverse events and all-cause discontinuations (P > 0.05). dTMS is an effective and safe treatment strategy for the management of patients with TRD.


Subject(s)
Depressive Disorder, Treatment-Resistant , Randomized Controlled Trials as Topic , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Treatment-Resistant/therapy , Transcranial Magnetic Stimulation/methods , Outcome Assessment, Health Care , Treatment Outcome
14.
Int J Food Microbiol ; 417: 110690, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38581832

ABSTRACT

Soy sauce is a traditional condiment that undergoes microbial fermentation of various ingredients to achieve its desired color, scent, and flavor. Sporidiobolus pararoseus, which is a type of Rhodocerevisiae, shows promising potential as a source of lipids, carotenoids, and enzymes that can enrich the taste and color of soy sauce. However, there is currently a lack of systematic and comprehensive studies on the functions and mechanisms of action of S. pararoseus during soy sauce fermentation. In this review, it is well established that S. pararoseus produces lipids that are abundant in unsaturated fatty acids, particularly oleic acid, as well as various carotenoids, such as ß-carotene, torulene, and torularhodin. These pigments are synthesized through the mevalonic acid pathway and possess remarkable antioxidant properties, acting as natural colorants. The synthesis of carotenoids is stimulated by high salt concentrations, which induces oxidative stress caused by NaCl. This stress further activates crucial enzymes involved in carotenoid production, ultimately leading to pigment formation. Moreover, S. pararoseus can produce high-quality enzymes that aid in the efficient utilization of soy sauce substrates during fermentation. Furthermore, this review focused on the impact of S. pararoseus on the color and quality of soy sauce and comprehensively analyzed its characteristics and ingredients. Thus, this review serves as a basis for screening high-quality oleaginous red yeast strains and improving the quality of industrial soy sauce production through the wide application of S. pararoseus.


Subject(s)
Basidiomycota , Carotenoids , Fermentation , Soy Foods , Soy Foods/microbiology , Basidiomycota/metabolism , Carotenoids/metabolism , Food Microbiology , Antioxidants/metabolism
15.
Am Heart J ; 273: 35-43, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641031

ABSTRACT

BACKGROUND: Current guidelines recommend complete revascularization (CR) in hemodynamically stable patients with ST-segment elevation myocardial infarction (STEMI) and multivessel coronary artery disease (MVD). With regard to the timing of percutaneous coronary intervention (PCI) for non-infarct-related artery (non-IRA), recent randomized clinical trials have revealed that immediate CR was non-inferior to staged CR. However, the optimal timing of CR remains uncertain. The OPTION-STEMI trial compared immediate CR and in-hospital staged CR guided by fractional flow reserve (FFR) for intermediate stenosis of the non-IRA. METHODS: The OPTION-STEMI is a multicenter, investigator-initiated, prospective, open-label, non-inferiority randomized clinical trial. The study included patients with at least 1 non-IRA lesion with ≥50% stenosis by visual estimation. Patients fulfilling the inclusion criteria were randomized into 2 groups at a 1:1 ratio: immediate CR (i.e., PCI for the non-IRA performed during primary angioplasty) or in-hospital staged CR. In the in-hospital staged CR group, PCI for non-IRA lesions was performed on another day during the index hospitalization. Non-IRA lesions with 50%-69% stenosis by visual estimation were evaluated by FFR, whereas those with ≥70% stenosis was revascularized without FFR. The primary endpoint was the composite of all-cause death, non-fatal myocardial infarction, and all unplanned revascularization at 1 year after randomization. Enrolment began in December 2019 and was completed in January 2024. The follow-up for the primary endpoint will be completed in January 2025, and primary results will be available in the middle of 2025. CONCLUSIONS: The OPTION-STEMI is a multicenter, non-inferiority, randomized trial that evaluated the timing of in-hospital CR with the aid of FFR in patients with STEMI and MVD. TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov. Unique identifier: NCT04626882; and URL: https://cris.nih.go.kr. Unique identifier: KCT0004457.


Subject(s)
Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , Fractional Flow Reserve, Myocardial/physiology , ST Elevation Myocardial Infarction/physiopathology , ST Elevation Myocardial Infarction/surgery , ST Elevation Myocardial Infarction/therapy , Percutaneous Coronary Intervention/methods , Prospective Studies , Coronary Artery Disease/physiopathology , Coronary Artery Disease/surgery , Coronary Artery Disease/complications , Coronary Artery Disease/diagnosis , Male , Female , Coronary Angiography , Time Factors , Myocardial Revascularization/methods , Time-to-Treatment , Middle Aged
16.
Water Res ; 256: 121619, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642538

ABSTRACT

Tannic acid (TA) aided hydrothermal treatment (HT) can decrease effective HT temperatures for sludge deep dewatering by chelator protein, but faces notable and economic challenges including the failure to remove antibiotics and the limited protein binding capacity. Herein, hydrothermally activated TA (in situ TA + HT) was conducted to simultaneously improve sludge dewaterability and antibiotic (tetracycline (TC), oxytetracycline (OTC), norfloxacin (NOR), ofloxacin (OFL)) removal. Compared to traditional HT and HT + TA treatment, the in-situ TA + HT process could further strengthen the TA-aided HT efficacy in enhancing sludge and reducing the protein content in the filtrate simultaneously; in which the optimal HT temperature for the dewatering of the sludge was reduced from 180 °C to 140 °C. Furthermore, the total removal efficiency of target antibiotics was achieved at more than 71.0-94.7% for TC and OTC, and 72.0-84.8% for NOR and OFL. The highly reactive species (·OH) generation and the electron transfer efficiency from the hydrothermal-activated TA process were responsible for the elimination of antibiotics and promoted the hydrolyzation and mineralization of HMW protein in sludge during the HT process. Meanwhile, the degradation of HMW proteins and the destruction of the secondary structure of these proteins resulted in improved hydrophobicity and dewaterability of sludge. Hydrothermally activated TA induces covalent binding with the protein. As a result, hydrothermal-activated TA could promote the removal of antibiotics and proteinaceous compounds from the sludge samples, improving the hydrophobicity of sludge and releasing bound water from the sludge flocs during HT. Finally, the cost of hydrothermal-activated TA was 66.51% lower than that of thermal drying treatment. This study not only proposed an effective method to improve traditional HT for sludge thermal dry-free treatment, but also provided new information on the catalysis roles of polyphenols in the hydrothermal conversion of sludge.


Subject(s)
Anti-Bacterial Agents , Sewage , Tannins , Tannins/chemistry , Sewage/chemistry , Anti-Bacterial Agents/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Polyphenols
17.
Angew Chem Int Ed Engl ; 63(24): e202404952, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38588012

ABSTRACT

The vast bulk of polystyrene (PS), a major type of plastic polymers, ends up in landfills, which takes up to thousands of years to decompose in nature. Chemical recycling promises to enable lower-energy pathways and minimal environmental impacts compared with traditional incineration and mechanical recycling. Herein, we demonstrated that methanol as a hydrogen supplier assisted the depolymerization of PS (denoted as PS-MAD) into alkylbenzenes over a heterogeneous catalyst composed of Ru nanoparticles on SiO2. PS-MAD achieved a high yield of liquid products which accounted for 93.2 wt % of virgin PS at 280 °C for 6 h with the production rate of 118.1 mmolcarbon gcatal. -1 h-1. The major components were valuable alkylbenzenes (monocyclic aromatics and diphenyl alkanes), the sum of which occupied 84.3 wt % of liquid products. According to mechanistic studies, methanol decomposition dominates the hydrogen supply during PS-MAD, thereby restraining PS aromatization which generates by-products of fused polycyclic arenes and polyphenylenes.

18.
Nanomaterials (Basel) ; 14(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535665

ABSTRACT

Inspired by the collective behaviors of active systems in nature, the collective behavior of micromotors has attracted more and more attention in recent years. However, little attention has been paid to the collective behavior of the immobilized micromotor, i.e., the micropump. In this paper, a unique pentacene-based micropump is reported, which demonstrates dynamic collective behavior activated by white light irradiation. The light irradiation may generate the photochemical reactions between pentacene and water, leading to the electroosmotic flow. As a result, this micropump is capable of pumping the surrounding solution inward along the substrate surface based on the electroosmosis mechanism. Intriguingly, the inward pumping causes the agglomeration of the tracer particles on the surface of the micropump. In addition, the aggregation can migrate following the change in the light irradiation position between two adjacent micropumps. Based on the aggregating and migrating behaviors of this pentacene-based micropump, we have achieved the conductivity restoration of the cracked circuit.

19.
Sci Total Environ ; 922: 171338, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38428608

ABSTRACT

Wastewater treatment plants (WWTPs) receive large quantities of microplastics (MPs) from raw wastewater, but many MPs are trapped in the sludge. Land application of sludge is a significant source of MP pollution. Existing reviews have summarized the analysis methods of MPs in sludge and the effect of MPs on sludge treatments. However, MP aging and mitigation during sludge treatment processes are not fully reviewed. Treatment processes used to remove water, pathogenic microorganisms, and other pollutants in sewage sludge also cause surface changes and degradation in the sludge MPs, affecting the potential risk of MPs. This study integrates MP abundance and distribution in sludge and their aging and mitigation characteristics during sludge treatment processes. The abundance, composition, and distribution of sludge MPs vary significantly with WWTPs. Furthermore, MPs exhibit variable degrees of aging, including rough surfaces, enhanced adsorption potentials for pollutants, and increased leaching behavior. Various sludge treatment processes further intensify these aging characteristics. Some sludge treatments, such as hydrothermal treatment, have efficiently removed MPs from sewage sludge. It is crucial to understand the potential risk of MP aging in sludge and the degradation properties of the MP-derived products from MP degradation in-depth and develop novel MP mitigation strategies in sludge, such as combining hydrothermal treatment and biological processes.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Sewage , Microplastics , Plastics , Wastewater , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid
20.
Se Pu ; 42(3): 245-255, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38503701

ABSTRACT

Dried blood spot (DBS) technology is a simple and convenient method for collecting, transporting, and storing blood samples on filter paper, and has numerous applications in the clinical, research, and public health settings. This technique is gaining popularity in the field of forensic science because it facilitates the rapid analysis of prohibited drugs in blood samples and offers significant advantages in toxicology scenarios such as drinking-driving screening, drug abuse detection, and doping detection. However, the lack of a standardized system and the fact that its stability and reliability have not been thoroughly researched and demonstrated limit its application in judicial practice in China. DBS samples can be prepared, stored, and analyzed in various ways, all of which may significantly affect the results. In this study, we developed a method based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) that focuses on the preparation, pretreatment, analysis, and storage of DBS samples. A thorough investigation was conducted to examine the optimal preparation conditions, including the blood spot matrix, drying technique, and preprocessing parameters, such as the solvent and extraction method. Moreover, the analytical conditions, such as the mobile phase system and elution gradient, were established to facilitate the quantitative detection of methamphetamine, lidocaine, ketamine, fentanyl, and diazepam in both DBS and whole-blood samples. The impact of storage conditions, such as the temperature, humidity, and sealing, on the analytical results of the DBS and whole-blood samples was also examined. The results showed a strong linear relationship for lidocaine and fentanyl within the range of 0.5-100 ng/mL. Similarly, methamphetamine, ketamine, and diazepam exhibited good linearity within the range of 2-100 ng/mL. The coefficients of determination (r2) ranged from 0.9983 to 0.9997, and the limits of detection ranged from 0.2 to 0.5 ng/mL, indicating a high degree of correlation and sensitivity. Stability tests demonstrated that the five target substances remained stable in the DBS for 60 days, with the measured contents deviating from the nominal values by 15%. Moreover, the measurement results of the DBS samples were highly similar to those of the whole-blood samples, with mean percentage differences of 4.44%, 3.50%, 7.66%, 5.10%, and 5.25% for fentanyl, diazepam, ketamine, lidocaine, and methamphetamine, respectively. Throughout the 60-day storage period, the maintenance of temperatures of -20 and 4 ℃, as well as sealing and dry storage, was not necessary. Room temperature was the most practical storage environment for the DBS samples. The results for each target showed very small concentration differences between the whole-blood and DBS samples, indicating that the DBS samples were suitable for drug and poison analysis in blood. Furthermore, the DBSs exhibited high quantitative consistency with the whole-blood samples, rendering them suitable matrices for preserving blood samples. Because DBS samples are easy to handle and store, they can realize the lightweight preservation of blood samples and provide a novel solution for the analysis and preservation of blood samples in public security practice. We recommend conducting comprehensive validations before utilizing DBS for analysis, particularly in terms of quantification, to ensure the judicial reliability of the results.


Subject(s)
Ketamine , Methamphetamine , Poisons , Tandem Mass Spectrometry/methods , Forensic Toxicology , Reproducibility of Results , Dried Blood Spot Testing/methods , Fentanyl , Diazepam , Lidocaine
SELECTION OF CITATIONS
SEARCH DETAIL
...