Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 12: 720081, 2021.
Article in English | MEDLINE | ID: mdl-34539748

ABSTRACT

The primary purpose of the current study was to assess the genetic diversity, runs of homozygosity (ROH) and ROH islands in a Chinese composite pig and explore hotspot regions for traces of selection. First, we estimated the length, number, and frequency of ROH in 262 Xidu black pigs using the Porcine SNP50 BeadChip and compared the estimates of inbreeding coefficients, which were calculated based on ROHs (FROH) and homozygosity (FHOM). Our result shows that a total of 7,248 ROH exceeding 1Mb were detected in 262 pigs. In addition, Sus scrofa chromosome (SSC) 8 and SSC10, respectively, has the highest and lowest chromosome coverage by ROH. These results suggest that inbreeding estimation based on total ROH may be a useful method, especially for crossbreed or composite populations. We also calculated an inbreeding coefficient of 0.077 from the total ROH. Eight ROH islands were found in this study. These ROH islands harbored genes associated with fat deposition, muscular development, reproduction, ear shape, and adaptation, such as TRAF7, IGFBP7, XPO1, SLC26A8, PPARD, and OR1F1. These findings may help to understand the effects of environmental and artificial selection on the genome structure of composite pigs. Our results provide a basis for subsequent genomic selection (GS), and provides a reference for the hybrid utilization of other pig breeds.

2.
J Appl Genet ; 56(4): 481-491, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25737137

ABSTRACT

Although allele expression imbalance has been recognized in many species, and strongly linked to diseases, no whole transcriptome allele imbalance has been detected in pigs during pathogen infections. The pathogen Streptococcus suis 2 (SS2) causes serious zoonotic disease. Different pig breeds show differential susceptibility/resistance to pathogen infection, but the biological insight is little known. Here we analyzed allele-specific expression (ASE) using the spleen transcriptome of four pigs belonging to two phenotypically different breeds after SS2 infection. The comparative analysis of allele specific SNPs between control and infected animals revealed 882 and 1096 statistically significant differentially expressed allele SNPs (criteria: ratio ≧ 2 or ≦ 0.5) in Landrace and Enshi black pig, respectively. Twenty nine allelically imbalanced SNPs were further verified by Sanger sequencing, and later six SNPs were quantified by pyrosequencing assay. The pyrosequencing results are in agreement with the RNA-seq results, except two SNPs. Looking at the role of ASE in predisposition to diseases, the discovery of causative variants by ASE analysis might help the pig industry in long term to design breeding programs for improving SS2 resistance.


Subject(s)
Polymorphism, Single Nucleotide , Streptococcal Infections/veterinary , Streptococcus suis , Sus scrofa/genetics , Swine Diseases/genetics , Alleles , Animals , Breeding , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Streptococcal Infections/genetics , Sus scrofa/classification , Sus scrofa/microbiology , Swine , Swine Diseases/microbiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...