Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 17(5): 1834-44, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27049403

ABSTRACT

Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.


Subject(s)
Cell Membrane/chemistry , Dendrimers/chemistry , Lipid Bilayers/chemistry , Nanoparticles/chemistry , Receptors, Cell Surface/chemistry , Biological Transport , Endocytosis , Humans , Ligands , Surface Properties
2.
Appl Microbiol Biotechnol ; 100(1): 215-25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26394862

ABSTRACT

Flexibility or rigidity of the linker between two fused proteins is an important parameter that affects the function of fusion proteins. In this study, we constructed a linker library with five elementary units based on the combination of the flexible (GGGGS) and the rigid (EAAAK) units. Molecular dynamics (MD) simulation showed that more rigid units in the linkers lead to more helical conformation and hydrogen bonds, and less distance fluctuation between the N- and C-termini of the linker. The diversity of linker flexibility of the linker library was then studied by fluorescence resonance energy transfer (FRET) of cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) fusion proteins, which showed that there is a wide range of distribution of the FRET efficiency. Dissipative particle dynamics (DPD) simulation of CFP-YFP with different linkers also gave identical results with that of FRET efficiency analysis, and we further found that the combination manner of the linker peptide had a remarkable effect on the orientation of CFP and YFP domains. Our studies demonstrated that the construction of the linker library with the widely controllable flexibility could provide appropriate linkers with the desirable characteristics to engineer the fusion proteins with the expected functions.


Subject(s)
Artificial Gene Fusion , Protein Engineering/methods , Recombinant Fusion Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Molecular Dynamics Simulation , Protein Conformation , Recombinant Fusion Proteins/chemistry
3.
Nanoscale ; 8(2): 1024-32, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26660086

ABSTRACT

The mixing on a single-particle level of chemically incompatible nanoparticles is an outstanding challenge for many applications. Burgeoning research activity suggests that entropic templating is a potential strategy to address this issue. Herein, using systematic computer simulations of model nanoparticle systems, we show that the entropy-templated interfacial organization of nanoparticles significantly depends on the stiffness of tethered chains. Unexpectedly, the optimal chain stiffness can be identified wherein a system exhibits the most perfect mixing for a certain compression ratio. Our simulations demonstrate that entropic templating regulated by chain stiffness precisely reflects various entropic repulsion states that arise from typical conformation regimes of semiflexible chains. The physical mechanism of the chain stiffness effect is revealed by analyzing the entropic repulsion states of tethered chains and quantitatively estimating the resulting entropy penalties, which provides direct evidence that supports the key role of entropic transition in the entropic templating strategy, as suggested in experiments. Moreover, the model nanoparticle systems are found to evolve into binary nanoparticle superlattices by remixing at extremely high stiffness. The findings facilitate the wide application of the entropic templating strategy in creating interfacially reactive nanomaterials with ordered structures on the single-nanoparticle level as well as mechanomutable responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...