Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Pathogens ; 13(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38787215

ABSTRACT

Female genital tract infections (FGTIs) include vaginal infections (e.g., bacterial vaginosis [BV]), endometritis, pelvic inflammatory disease [PID], and chorioamnionitis [amniotic fluid infection]. They commonly occur in women of reproductive age and are strongly associated with multiple adverse health outcomes including increased risk of HIV/sexually transmitted infection acquisition and transmission, infertility, and adverse birth outcomes such as preterm birth. These FGTIs are characterized by a disruption of the cervicovaginal microbiota which largely affects host immunity through the loss of protective, lactic acid-producing Lactobacillus spp. and the overgrowth of facultative and strict anaerobic bacteria. Prevotella species (spp.), anaerobic Gram-negative rods, are implicated in the pathogenesis of multiple bacterial FGTIs. Specifically, P. bivia, P. amnii, and P. timonensis have unique virulence factors in this setting, including resistance to antibiotics commonly used in treatment. Additionally, evidence suggests that the presence of Prevotella spp. in untreated BV cases can lead to infections of the upper female genital tract by ascension into the uterus. This narrative review aims to explore the most common Prevotella spp. in FGTIs, highlight their important role in the pathogenesis of FGTIs, and propose future research in this area.

2.
BMJ Open ; 14(2): e083516, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316599

ABSTRACT

INTRODUCTION: The aetiology of bacterial vaginosis (BV), a biofilm-associated vaginal infection, remains unknown. Epidemiologic data suggest that it is sexually transmitted. BV is characterised by loss of lactic acid-producing lactobacilli and an increase in facultative and strict anaerobic bacteria. Gardnerella spp are present in 95%-100% of cases; Gardnerella vaginalis has been found to be more virulent than other BV-associated bacteria (BVAB) in vitro. However, G. vaginalis is found in women with normal vaginal microbiota and colonisation is not sufficient for BV development. We hypothesise that Gardnerella spp initiate BV biofilm formation, but incident BV (iBV) requires incorporation of other key BVAB (ie, Prevotella bivia, Fannyhessea vaginae) into the biofilm that alter the transcriptome of the polymicrobial consortium. This study will investigate the sequence of microbiologic events preceding iBV. METHODS AND ANALYSIS: This study will enrol 150 women aged 18-45 years with normal vaginal microbiota and no sexually transmitted infections at a sexual health research clinic in Birmingham, Alabama. Women will self-collect twice daily vaginal specimens up to 60 days. A combination of 16S rRNA gene sequencing, qPCR for Gardnerella spp, P. bivia and F. vaginae, and broad range 16S rRNA gene qPCR will be performed on twice daily vaginal specimens from women with iBV (Nugent score 7-10 on at least 2 consecutive days) and controls (with comparable age, race, contraceptive method and menstrual cycle days) maintaining normal vaginal microbiota to investigate changes in the vaginal microbiota over time for women with iBV. Participants will complete daily diaries on multiple factors including sexual activity. ETHICS AND DISSEMINATION: This protocol is approved by the University of Alabama at Birmingham Institutional Review Board (IRB-300004547) and written informed consent will be obtained from all participants. Findings will be presented at scientific conferences and published in peer-reviewed journals as well as disseminated to providers and patients in communities of interest.


Subject(s)
Vaginosis, Bacterial , Humans , Female , Vaginosis, Bacterial/epidemiology , Vaginosis, Bacterial/microbiology , Gardnerella/genetics , Prospective Studies , RNA, Ribosomal, 16S/genetics , Vagina/microbiology , Prevotella/genetics , Microbial Interactions , Observational Studies as Topic
3.
Am J Med Sci ; 367(5): 304-309, 2024 May.
Article in English | MEDLINE | ID: mdl-38340982

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (Spn) infection remains common worldwide despite recent vaccine efforts. Invasive pneumococcal disease (IPD) is the most severe form of Spn infection. Known individual risk factors for IPD include male gender and African American race. However, area-level socioeconomic factors have not been assessed. We examined the association of neighborhood-level disadvantages and risk of IPD in a tertiary medical center located in a socioeconomic diverse urban area in the Southeastern United States. METHODS: Patients hospitalized with culture-confirmed Streptococcus pneumoniae (Spn) infection from 01/01/2010 - 12/31/2019 were identified from electronic health record (EHR). The cohort's demographic and clinical information were obtained from EHR. Patients' residential address was geocoded and matched to 2015 area deprivation index (ADI). The association of ADI and IPD was evaluated using logistic regression after controlling for the demographic information (age, sex, race) and clinical factors (BMI, smoking status, alcoholism, immunosuppressive status, vaccination status, comorbidities). RESULTS: A total of 268 patients were hospitalized with culture-positive Streptococcus pneumoniae infection and 92 (34.3%) of them had IPD. The analysis showed that higher neighborhood deprivation (ADI in 79-100) was associated with increased risk of developing IPD in younger patients with age less than 65 (p = 0.007) after controlling for the individual demographic information and clinical factors. CONCLUSIONS: ADI is a risk factor for IPD in younger adults. Community-level socioeconomic risk factors should be considered when developing prevention strategies such as increasing vaccine uptake in high risk population to reduce the disease burden of IPD.


Subject(s)
Pneumococcal Infections , Vaccines , Adult , Humans , Male , Infant , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/etiology , Streptococcus pneumoniae , Risk Factors , Comorbidity , Pneumococcal Vaccines , Incidence
4.
Front Immunol ; 13: 935306, 2022.
Article in English | MEDLINE | ID: mdl-35983047

ABSTRACT

Leukocyte infiltration and persistence within peripheral nerves have been implicated in chronic nociception pathogenesis in murine peripheral neuropathy models. Endoneurial cytokine and chemokine expression contribute to leukocyte infiltration and maintenance of a pro-inflammatory state that delays peripheral nerve recovery and promotes chronic pain behaviors in these mice. However, there has been a failure to translate murine model data into safe and effective treatments for chronic neuropathic pain in peripheral neuropathy patients, or develop reliable biomarkers that may help diagnose or determine treatment responses in affected patients. Initial work showed that persistent sciatic nerve CD11b+ CD45+ leukocyte infiltration was associated with disease severity in three mouse models of inflammatory and traumatic peripheral neuropathies, implying a direct contributing role in disease pathogenesis. In support of this, CD11b+ leukocytes were also seen in the sural nerve biopsies of chronic neuropathic pain patients with three different peripheral neuropathies. Systemic CD11b antagonism using a validated function-neutralizing monoclonal antibody effectively treated chronic nociception following unilateral sciatic nerve crush injury (a representative traumatic neuropathy model associated with axonal degeneration and increased blood-nerve barrier permeability) and does not cause drug addiction behaviors in adult mice. These data suggest that CD11b could be an effective molecular target for chronic neuropathic pain treatment in inflammatory and traumatic peripheral neuropathies. Despite known murine peripheral neuropathy model limitations, our initial work suggests that early expression of pro-inflammatory cytokines, such as tissue inhibitor of metalloproteinases-1 may predict subsequent chronic nociception development following unilateral sciatic nerve crush injury. Studies aligning animal model investigation with observational data from well-characterized human peripheral neuropathies, including transcriptomics and proteomics, as well as animal model studies using a human clinical trial design should foster the identification of clinically relevant biomarkers and effective targeted treatments with limited addiction potential for chronic neuropathic pain in peripheral neuropathy patients.


Subject(s)
Crush Injuries , Neuralgia , Neuritis , Peripheral Nerve Injuries , Sciatic Neuropathy , Animals , Biomarkers , Crush Injuries/complications , Cytokines/metabolism , Disease Models, Animal , Humans , Integrins/therapeutic use , Leukocytes/metabolism , Mice , Neuralgia/drug therapy , Neuralgia/etiology , Peripheral Nerve Injuries/complications , Sciatic Neuropathy/complications
6.
J Peripher Nerv Syst ; 24(2): 195-206, 2019 06.
Article in English | MEDLINE | ID: mdl-31119823

ABSTRACT

The blood-nerve barrier (BNB) formed by tight junction-forming endoneurial microvessels located in the innermost compartment of peripheral nerves, and the perineurium serve to maintain the internal microenvironment required for normal signal transduction. The specific molecular components that define the normal adult human BNB are not fully known. Guided by data derived from the adult human BNB transcriptome, we evaluated the in situ expression of 25 junctional complex, transporter, cell membrane, and cytoskeletal proteins in four histologically normal adult sural nerves by indirect fluorescent immunohistochemistry to determine proteins specifically expressed by restrictive endoneurial microvascular endothelium. Using Ulex Europaeus Agglutinin-1 expression to detect endothelial cells, we ascertained that the selected proteins were uniformly expressed in ≥90% of endoneurial microvessels. P-glycoprotein (also known as adenosine triphosphate-binding cassette subfamily B member 1) and solute carrier family 1 member 1 demonstrated restricted expression by endoneurial endothelium only, with classic tight junction protein claudin-5 also expressed on fenestrated epineurial macrovessels, and vascular-specific adherens junction protein cadherin-5 also expressed by the perineurium. The expression profiles of the selected proteins provide significant insight into the molecular composition of normal adult peripheral nerves. Further work is required to elucidate the human adult BNB molecular signature in order to better understand its development and devise strategies to restore function in peripheral neuropathies.


Subject(s)
Blood-Nerve Barrier/metabolism , Microvessels/metabolism , Peripheral Nerves/metabolism , Transcriptome , Aged , Agglutinins/metabolism , Endothelial Cells/metabolism , Female , Humans , Immunohistochemistry , Male , Middle Aged
7.
Tissue Barriers ; 6(4): 1-22, 2018.
Article in English | MEDLINE | ID: mdl-30523753

ABSTRACT

The human blood-nerve barrier (BNB) formed by endoneurial microvascular endothelial cells, serves to maintain the internal microenvironment in peripheral nerves required for normal axonal signal transduction to and from the central nervous system. The mechanisms of human BNB formation in health and disease are not fully elucidated. Prior work established a sufficient role for glial-derived neurotrophic factor (GDNF) in enhancing human BNB biophysical properties following serum withdrawal in vitro via RET-tyrosine kinase-dependent cytoskeletal remodeling. The objective of the study was to ascertain the downstream signaling pathway involved in this process and more comprehensively determine the molecular changes that may occur at human BNB intercellular junctions under the influence of GDNF. Proteomic studies suggested expression of several mitogen-activated protein kinases (MAPKs) in confluent GDNF-treated endoneurial endothelial cells following serum withdrawal. Using electric cell-substrate impedance sensing to continuously measure transendothelial electrical resistance and static transwell solute permeability assays with fluoresceinated small and large molecules to evaluate BNB biophysical function, we determined MAPK signaling was essential for GDNF-mediated BNB TEER increase following serum withdrawal downstream of RET-tyrosine kinase signaling that persisted for up to 48 hours in vitro. This increase was associated with reduced solute permeability to fluoresceinated sodium and high molecular weight dextran. Specific GDNF-mediated alterations were detected in cytoskeletal and intercellular junctional complex molecular transcripts and proteins relative to basal conditions without exogenous GDNF. This work provides novel insights into the molecular determinants and mechanisms responsible for specialized restrictive human BNB formation in health and disease.


Subject(s)
Blood-Nerve Barrier/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , MAP Kinase Signaling System/physiology , Endothelial Cells/metabolism , Humans , Peripheral Nerves/metabolism
8.
Hum Vaccin Immunother ; 14(11): 2568-2579, 2018.
Article in English | MEDLINE | ID: mdl-29953326

ABSTRACT

Guillain-Barré syndrome (GBS), the most common cause of acute neuromuscular weakness and paralysis worldwide, encompasses a group of acute immune-mediated disorders restricted to peripheral nerves and roots. Immune-mediated attack of peripheral nervous system myelin, axons or both is presumed to be triggered by molecular mimicry, with both cell- and humoral-dependent mechanisms implicated in disease pathogenesis. Good circumstantial evidence exists for a pathogenic role for molecular mimicry in GBS pathogenesis, especially with its axonal forms, providing insights that could guide future immunotherapy. Intravenous immunoglobulin (IVIg) and plasma exchange (PE) are the most commonly prescribed immunotherapies for GBS with variable efficacy dependent on GBS subtype, severity at initial presentation and other clinical and electrophysiologic prognostic factors. The mechanisms of action of IVIg and PE are not known definitely. Despite recent significant advances in molecular biology that provide insights into GBS pathogenesis, no advances in therapeutics or significant improvements in patient outcomes have occurred over the past three decades. We summarize the clinical aspects of GBS, its current pathogenesis and immunotherapy, and highlight the potential of leukocyte trafficking inhibitors as novel disease-specific immunotherapeutic drugs.


Subject(s)
Guillain-Barre Syndrome/therapy , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Immunotherapy/methods , Plasma Exchange , Chemotaxis, Leukocyte/drug effects , Chemotaxis, Leukocyte/immunology , Guillain-Barre Syndrome/complications , Guillain-Barre Syndrome/diagnosis , Guillain-Barre Syndrome/immunology , Humans , Immunologic Factors/pharmacology , Immunotherapy/trends , Severity of Illness Index , Treatment Outcome
9.
Tissue Barriers ; 6(2): 1-22, 2018.
Article in English | MEDLINE | ID: mdl-29913111

ABSTRACT

There is emerging evidence that glial-derived neurotrophic factor (GDNF) is a potent inducer of restrictive barrier function in tight junction-forming microvascular endothelium and epithelium, including the human blood-nerve barrier (BNB) in vitro. We sought to determine the role of GDNF in restoring BNB function in vivo by evaluating sciatic nerve horseradish peroxidase (HRP) permeability in tamoxifen-inducible GDNF conditional knockout (CKO) adult mice following non-transecting crush injury via electron microscopy, with appropriate wildtype (WT) and heterozygous (HET) littermate controls. A total of 24 age-, genotype- and sex-matched mice >12 weeks of age were injected with 30 mg/kg HRP via tail vein injection 7 or 14 days following unilateral sciatic nerve crush, and both sciatic nerves were harvested 30 minutes later for morphometric assessment by light and electron microscopy. The number and percentage of HRP-permeable endoneurial microvessels were ascertained to determine the effect of GDNF in restoring barrier function in vivo. Following sciatic nerve crush, there was significant upregulation in GDNF protein expression in WT and HET mice that was abrogated in CKO mice. GDNF significantly restored sciatic nerve BNB HRP impermeability to near normal levels by day 7, with complete restoration seen by day 14 in WT and HET mice. A significant recovery lag was observed in CKO mice. This effect was independent on VE-Cadherin or claudin-5 expression on endoneurial microvessels. These results imply an important role of GDNF in restoring restrictive BNB function in vivo, suggesting a potential strategy to re-establish the restrictive endoneurial microenvironment following traumatic peripheral neuropathies.


Subject(s)
Blood-Nerve Barrier/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Peripheral Nervous System Diseases/pathology , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Crush , Nerve Regeneration/physiology , Peripheral Nervous System Diseases/metabolism , Permeability , Recovery of Function/physiology
10.
Sci Rep ; 7(1): 17477, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234067

ABSTRACT

The blood-nerve barrier (BNB), formed by tight junction-forming microvessels within peripheral nerve endoneurium, exists to regulate its internal microenvironment essential for effective axonal signal transduction. Relatively little is known about the unique human BNB molecular composition. Such knowledge is crucial to comprehend the relationships between the systemic circulation and peripheral nerves in health, adaptations to intrinsic or extrinsic perturbations and alterations that may result in disease. We performed RNA-sequencing on cultured early- and late-passage adult primary human endoneurial endothelial cells and laser-capture microdissected endoneurial microvessels from four cryopreserved normal adult human sural nerves referenced to the Genome Reference Consortium Human Reference 37 genome browser, using predefined criteria guided by known transcript or protein expression in vitro and in situ. We identified 12881 common transcripts associated by 125 independent biological networks, defined as the normal adult BNB transcriptome, including a comprehensive array of transporters and specialized intercellular junctional complex components. These identified transcripts and their interacting networks provide insights into peripheral nerve microvascular morphogenesis, restrictive barrier formation, influx and efflux transporters with relevance to understanding peripheral nerve homeostasis and pharmacology, including targeted drug delivery and the mediators of leukocyte trafficking in peripheral nerves during normal immunosurveillance.


Subject(s)
Blood-Nerve Barrier/metabolism , Transcriptome , Adult , Cells, Cultured , Endothelial Cells/metabolism , Female , Gene Expression Profiling , Humans , Laser Capture Microdissection , Male , Middle Aged , Primary Cell Culture , Sciatic Nerve/metabolism , Sequence Analysis, RNA , Sural Nerve/metabolism
11.
Exp Neurol ; 292: 35-45, 2017 06.
Article in English | MEDLINE | ID: mdl-28215575

ABSTRACT

The molecular determinants of pathogenic leukocyte migration across the blood-nerve barrier (BNB) in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) are unknown. Specific disease modifying therapies for CIDP are also lacking. Fibronectin connecting segment-1 (FNCS1), an alternatively spliced fibronectin variant expressed by microvascular endothelial cells at sites of inflammation in vitro and in situ, is a counterligand for leukocyte α4 integrin (also known as CD49d) implicated in pathogenic leukocyte trafficking in multiple sclerosis and inflammatory bowel disease. We sought to determine the role of FNCS1 in CIDP patient leukocyte trafficking across the BNB in vitro and in severe chronic demyelinating neuritis in vivo using a representative spontaneous murine CIDP model. Peripheral blood mononuclear leukocytes from 7 untreated CIDP patients were independently infused into a cytokine-treated, flow-dependent in vitro BNB model system. Time-lapse digital video microscopy was performed to visualize and quantify leukocyte trafficking, comparing FNCS1 peptide blockade to relevant controls. Fifty 24-week old female B7-2 deficient non-obese diabetic mice with spontaneous autoimmune peripheral polyneuropathy (SAPP) were treated daily with 2mg/kg FNCS1 peptide for 5days via intraperitoneal injection with appropriate controls. Neurobehavioral measures of disease severity, motor nerve electrophysiology assessments and histopathological quantification of inflammation and morphometric assessment of demyelination were performed to determine in vivo efficacy. The biological relevance of FNCS1 and CD49d in CIDP was evaluated by immunohistochemical detection in affected patient sural nerve biopsies. 25µM FNCS1 peptide maximally inhibited CIDP leukocyte trafficking at the human BNB in vitro. FNCS1 peptide treatment resulted in significant improvements in disease severity, motor electrophysiological parameters of demyelination and histological measures of inflammatory demyelination. Microvessels demonstrating FNCS1 expression and CD49d+ leukocytes were seen within the endoneurium of patient nerve biopsies. Taken together, these results imply a role for FNCS1 in pathogenic leukocyte trafficking in CIDP, providing a potential target for therapeutic modulation.


Subject(s)
Fibronectins/metabolism , Inflammation/drug therapy , Leukocytes, Mononuclear/drug effects , Peptides/pharmacology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/drug therapy , Aged , Animals , Cell Movement , Electrophysiological Phenomena/drug effects , Female , Humans , Intercellular Signaling Peptides and Proteins , Leukocytes/drug effects , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Peripheral Nerves/drug effects , Peripheral Nerves/pathology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/metabolism , Protein Transport/drug effects
12.
Acta Neuropathol ; 132(5): 739-752, 2016 11.
Article in English | MEDLINE | ID: mdl-27460017

ABSTRACT

The molecular determinants and mechanisms involved in leukocyte trafficking across the blood-nerve barrier (BNB) in the acute inflammatory demyelinating polyradiculoneuropathy (AIDP) variant of Guillain-Barré syndrome are incompletely understood. Prior work using a flow-dependent in vitro human BNB model demonstrated a crucial role for αM-integrin (CD11b)-intercellular adhesion molecule-1 interactions in AIDP patient leukocyte trafficking. The aim of this study is to directly investigate the biological relevance of CD11b in AIDP pathogenesis. Immunohistochemistry was performed on three AIDP patient sural nerve biopsies to evaluate endoneurial leukocyte CD11b expression. A severe murine experimental autoimmune neuritis (sm-EAN) model was utilized to determine the functional role of CD11b in leukocyte trafficking in vivo and determine its effect on neurobehavioral measures of disease severity, electrophysiological assessments of axonal integrity and myelination and histopathological measures of peripheral nerve inflammatory demyelination. Time-lapse video microscopy and electron microscopy were employed to observe structural alterations at the BNB during AIDP patient leukocyte trafficking in vitro and in situ, respectively. Large clusters of endoneurial CD11b+ leukocytes associated with demyelinating axons were observed in AIDP patient sural nerves. Leukocyte CD11b expression was upregulated during sm-EAN. 5 mg/kg of a function-neutralizing monoclonal rat anti-mouse CD11b antibody administered after sm-EAN disease onset significantly ameliorated disease severity, as well as electrophysiological and histopathological parameters of inflammatory demyelination compared to vehicle- and isotype antibody-treated mice. Consistent with in vitro observations of leukocyte trafficking at the BNB, electron micrographs of AIDP patient sural nerves demonstrated intact electron-dense endoneurial microvascular intercellular junctions during paracellular mononuclear leukocyte transmigration. Our data support a crucial pathogenic role of CD11b in AIDP leukocyte trafficking, providing a potential therapeutic target for demyelinating variants of Guillain-Barré syndrome.


Subject(s)
CD11b Antigen/genetics , Guillain-Barre Syndrome/metabolism , Guillain-Barre Syndrome/pathology , Leukocytes/metabolism , Animals , Antibodies/pharmacology , Antigens, CD/metabolism , Antigens, Differentiation/metabolism , CD11b Antigen/immunology , CD11b Antigen/metabolism , Cell Tracking , Disease Models, Animal , Electric Stimulation , Female , Flow Cytometry , Gene Expression Regulation/drug effects , Guillain-Barre Syndrome/drug therapy , Guillain-Barre Syndrome/genetics , Humans , Immunoglobulins, Intravenous/therapeutic use , Leukocytes/pathology , Leukocytes/ultrastructure , Male , Mice , Microscopy, Electron , Neural Conduction , Neurofilament Proteins/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Sciatic Nerve/metabolism , Sciatic Nerve/physiopathology , Statistics, Nonparametric
13.
J Neuroinflammation ; 13: 3, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26732309

ABSTRACT

Peripheral neuroinflammation is characterized by hematogenous mononuclear leukocyte infiltration into peripheral nerves. Despite significant clinical knowledge, advancements in molecular biology and progress in developing specific drugs for inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis, there are currently no specific therapies that modulate pathogenic peripheral nerve inflammation. Modeling leukocyte trafficking at the blood-nerve barrier using a reliable human in vitro model and potential intravital microscopy techniques in representative animal models guided by human observational data should facilitate the targeted modulation of the complex inflammatory cascade needed to develop safe and efficacious therapeutics for immune-mediated neuropathies and chronic neuropathic pain.


Subject(s)
Blood-Brain Barrier/physiopathology , Genetic Therapy/methods , Leukocytes/physiology , Neuritis/therapy , Peripheral Nervous System/pathology , Animals , Humans , Neuritis/genetics , Peripheral Nervous System/metabolism
14.
Arthritis Rheumatol ; 66(5): 1291-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24782186

ABSTRACT

OBJECTIVE: To investigate whether the Fcγ receptor IIIa-66L/R/H (FcγRIIIa-66L/R/H) polymorphism influences net effective receptor function and to assess if the FCGR3A combined genotypes formed by FcγRIIIa-66L/R/H and FcγRIIIa-176F/V, as well as copy number variation (CNV), confer risk of developing systemic lupus erythematosus (SLE) and lupus nephritis. METHODS: FcγRIIIa variants, expressed on A20 IIA1.6 cells, were used in flow cytometry-based human IgG-binding assays. Using Pyrosequencing methodology, FCGR3A single-nucleotide polymorphism and CNV genotypes were determined in a cohort of 1,728 SLE patients and 2,404 healthy controls. RESULTS: The FcγRIIIa-66L/R/H (rs10127939) polymorphism influenced ligand binding capacity in the presence of the FcγRIIIa-176V (rs396991) allele. There was a trend toward an association of the low-binding FcγRIIIa-176F allele with lupus nephritis among African Americans (P = 0.0609) but not among European Americans (P > 0.10). Nephritis among African American patients with SLE was associated with FcγRIIIa low-binding haplotypes containing the 66L/R/H and 176F variants (P = 0.03) and with low-binding genotype combinations (P = 0.002). No association was observed among European American patients with SLE. The distribution of FCGR3A CNV was not significantly different among controls and SLE patients with or without nephritis. CONCLUSION: FcγRIIIa-66L/R/H influences ligand binding. The low-binding haplotypes formed by 66L/R/H and 176F confer enhanced risk of lupus nephritis in African Americans. FCGR3A CNVs are not associated with SLE or lupus nephritis in either African Americans or European Americans.


Subject(s)
Black or African American/genetics , Immunoglobulin G/metabolism , Lupus Nephritis/ethnology , Lupus Nephritis/genetics , Receptors, IgG/genetics , Alleles , Case-Control Studies , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Genotype , Haplotypes/genetics , Humans , Lupus Nephritis/epidemiology , Phenotype , Polymorphism, Single Nucleotide/genetics , Protein Binding , Risk Factors , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...