Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
MycoKeys ; 102: 301-315, 2024.
Article in English | MEDLINE | ID: mdl-38495535

ABSTRACT

Rich and diverse fungal species occur in different habitats on the earth. Many new taxa are being reported and described in increasing numbers with the advent of molecular phylogenetics. However, there are still a number of unknown fungi that have not yet been discovered and described. During a survey of fungal diversity in different habitats in China, we identified and proposed two new species, based on the morphology and multi-gene phylogenetic analyses. Herein, we report the descriptions, illustrations and molecular phylogeny of the two new species, Bisifusariumkeratinophilumsp. nov. and Ovatosporasinensissp. nov.

2.
Planta ; 259(3): 59, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38311641

ABSTRACT

MAIN CONCLUSION: The composition, diversity and co-occurrence patterns of the rhizosphere microbiota of E. ulmoides were significantly influenced by environmental factors, and which were potentially associated with the contents of pharmacological active ingredients. Eucommia ulmoides is an important perennial medicinal plant. However, little is known about the interactions among microbiota, environmental factors (EFs), and pharmacological active ingredients (PAIs) of E. ulmoides. Herein, we analyzed the interactions among rhizosphere microbiota-EFs-PAIs of E. ulmoides by amplicon sequencing and multi-analytical approach. Our results revealed variations in the dominant genera, diversity, and co-occurrence networks of the rhizosphere microbiota of E. ulmoides across different geographical locations. Notably, available nitrogen exerted the strongest influence on fungal dominant genera, while pH significantly impacted bacterial dominant genera. Rainfall and relative humidity exhibited pronounced effects on the α-diversity of fungal groups, whereas available phosphorus influenced the number of nodes in fungal co-occurrence networks. Altitude and total phosphorus had substantial effects on the average degree and nodes in bacterial co-occurrence networks. Furthermore, the dominant genera, diversity and co-occurrence network of rhizosphere microbiota of E. ulmoides were significantly correlated with the content of PAIs. Specifically, the abundance of rhizosphere dominant genera Filobasidium, Hannaella and Nitrospira were significantly correlated with the content of pinoresinol diglucoside (PD). Similarly, the abundance of Vishniacozyma and Bradyrhizobium correlated significantly with the content of geniposidic acid (GC), while the abundance of Gemmatimonas was significantly correlated with the content of aucubin. Moreover, the bacterial co-occurrence network parameters including average degree, density, and edge, were significantly correlated with the content of GC and aucubin. The α-diversity index Chao1 also displayed a significant correlation with the content of PD. These findings contribute to a more comprehensive understanding of the interactions between medicinal plants and microbes.


Subject(s)
Eucommiaceae , Iridoid Glucosides , Lignans , Microbiota , Plants, Medicinal , Rhizosphere , Eucommiaceae/chemistry , Bacteria/genetics , Phosphorus , Soil Microbiology , Soil
3.
ACS Nano ; 17(23): 23814-23828, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38038679

ABSTRACT

Polyethylene glycol conjugation (PEGylation) is the most successful strategy to promote the stability, pharmacokinetics, and efficacy of therapeutics; however, anti-PEG antibodies induced by repeated treatments raise serious concerns about the future of PEGylated therapeutics. In order to solve the "PEG dilemma", polymers with excellent water solubility and biocompatibility are urgently desired to attenuate the generation of anti-PEG antibodies. Here, poly(ethyl ethylene phosphate) (PEEP) with excellent degradability and stealth effects is used as an alternative to PEG to overcome the "PEG dilemma". PEEPylated liposomes exhibit lower immunogenicity and generate negligible anti-PEEP antibodies (IgM and IgG) after repeated treatments. In vivo studies confirm that PEEPylated liposomes loaded with oxaliplatin (PEEPlipo@OxPt) show better pharmacokinetics compared to PEGlipo@OxPt, and they exhibit potent antitumor performances, which can be further promoted with checkpoint blockade immunotherapy. In addition, PEEPylated lipid nanoparticle is also used to develop an mRNA vaccine with the ability to evoke a potent antigen-specific T cell response and achieve excellent antitumor efficacy. PEEP shows promising potentials in the development of next-generation nanomedicines and vaccines with higher safety and efficacy.


Subject(s)
Neoplasms , Polyethylene Glycols , Humans , Polyethylene Glycols/pharmacokinetics , Liposomes , Neoplasms/drug therapy , Immunotherapy , Vaccination , Ethylenes
4.
Indian J Microbiol ; 63(3): 324-336, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37781006

ABSTRACT

Members of the plant mycobiota are all associated to varying degrees with the development of plant diseases. Although many reports on the plant mycobiota are well documented, the relationships between mycobiota of Rosa roxburghii and plant diseases are poorly understood. Mutual interactions and extent of the roles of microbial communities associated with R. roxburghii and the source of pathogens are still unclear, and more research is needed on the health benefits of this ecologically important population. Using high-throughput sequencing, we analyzed the mycobiota composition and ecological guilds of the rhizosphere, root, and phyllosphere of healthy and diseased R. roxburghii from the Tianfu R. roxburghii Industrial Park in Panzhou city, Guizhou province. Analysis of community composition showed that the relative abundance of pathogens of leaf spot, including Alternaria, Pestalotiopsis and Neofusicoccum in the phyllosphere of diseased plant (LD), were 1.15%, 0.15% and 0.06%, and the relative abundance of Alternaria and Pestalotiopsis were 0.96% and 0.58% in healthy plant (LH). The alpha diversity indices indicated that fungal diversity was higher in healthy plants compared to diseased plants in each compartment. The alpha diversity index of fungi in the phyllosphere (LH) of healthy R. roxburghii, including Shannon, Chao-1, and Faith-pd indices, was 1.02, 81.50 and 10.42 higher than that of the diseased (LD), respectively. The fungi in the rhizosphere of healthy was 1.03, 59.00 and 5.56 higher than the diseased, respectively. The Shannon index of fungi in the root of healthy was 0.29 higher than that of diseased. Principal Coordinate analysis and ANOSIM results showed that there were significant differences in mycobiota composition between healthy and diseased phyllospheres (P < 0.05), as well as rhizosphere fungal community, while there was no significant difference between healthy and diseased roots (P > 0.05). Linear discriminant analysis effect size revealed that, at different taxonomic levels, there were significantly different taxa between the healthy and diseased plants in each compartment. The ecological guilds differed between healthy and diseased plants according to the FUNGuild analysis. For example, of healthy compared to diseased plants, the percentages of "lichenized-undefined saprotroph" were increased by 2.34%, 0.44%, and 1.54% in the phyllosphere, root, and rhizosphere, respectively. In addition, the plant pathogens existed in each compartment of R. roxburghii, but the percentages of "plant pathogen" were increased by 1.16% in the phyllosphere of diseased compared to healthy plants. Together, the ecological guild and co-occurrence network indicated that the potential pathogens of leaf spot were mainly found in the phyllosphere. This study explained one of pathogen origin of leaf spots of R. roxburghii by the microbial community ecology, which will provide the new insights for identification of plant pathogens.

5.
Curr Microbiol ; 80(9): 309, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37535152

ABSTRACT

The process of urbanization is one of the most important human-driven activities that reshape the natural distribution of soil microorganisms. However, it is still unclear about the effects of urbanization on the different taxonomic soil bacterial community dynamics. In this study, we collected soil samples from highly urbanized the regions of Yangtze River Delta, Beijing-Tianjin-Hebei in China, to explore the bio-geographic patterns, assembly processes, and symbiotic patterns of abundant, moderate, and rare bacterial communities. We found that the number of moderate and rare taxa species were lower than that of abundant taxa, but their α-diversity index was higher than abundant taxa. Proteobacteria, Acidobacteria, Actinobacteria, Bacterioidetes, and Chloroflexi were the dominant phylum across all three sub-communities. And the ß-diversity value of rare taxa was significantly higher than those of moderate and abundant taxa. Abundant, moderate, and rare sub-communities showed a weak distance-decay relationship, and the moderate taxa had the highest turnover rate of microbial geography in the context of urbanization. Diffusion limitation was the dominant process of soil bacterial community assembly. The co-occurrence networks of abundant, moderate, and rare taxa were dominated by positive correlations. The network of moderate taxa had the highest modularity, followed by abundant taxa. The main functions of the abundant, moderate, and rare taxa were related to Chemoheterotrophy and N transformations. Redundancy analysis showed that the dispersal limitation, climate, and soil properties were the main factors dominating bio-geographic differences in soil bacterial community diversity. We conclude that human-dominated urbanization processes have generated more uncertain survival pressures on soil bacteria, which resulted in a stronger linkage but weak bio-geographic variation for soil bacteria. In the future urban planning process, we suggest that such maintenance of native vegetation and soil types should be considered to maintain the long-term stability of local microbial ecosystem functions.


Subject(s)
Ecosystem , Soil , Humans , Parks, Recreational , Soil Microbiology , Bacteria/genetics
6.
Eur J Neurosci ; 58(4): 3132-3149, 2023 08.
Article in English | MEDLINE | ID: mdl-37501373

ABSTRACT

Cerebrospinal fluid (CSF) phosphorylated tau231 (P-tau231) is associated with neuropathological outcomes of Alzheimer's disease (AD). The invasive access of cerebrospinal fluid has greatly stimulated interest in the identification of blood-based P-tau231, and the recent advent of single-molecule array assay for the quantification of plasma P-tau231 may provide a turning point to evaluate the usefulness of P-tau231 as an AD-related biomarker. Yet, in the plasma P-tau231 literature, findings with regard to its diagnostic utility have been inconsistent, and thus, we aimed to statistically investigate the potential of plasma P-tau231 in the context of AD via meta-analysis. Publications on plasma P-tau231 were systematically retrieved from PubMed, EMBASE, the Cochrane library and Web of Science databases. A total of 10 studies covering 2007 participants were included, and we conducted random-effect or fixed-effect meta-analysis, sensitivity analysis and publication bias analysis using the STATA SE 14.0 software. According to our quantitative integration, plasma P-tau231 increased from cognitively unimpaired (CU) populations to mild cognitive impairment to AD and showed significant changes in pairwise comparisons of AD, mild cognitive impairment and CU. Plasma P-tau231 level was significantly higher in CU controls with positive amyloid-ß (Aß) status compared with Aß-negative CU group. Additionally, the excellent diagnostic accuracy of plasma P-tau231 for asymptomatic Aß pathology was verified by the pooled value of area under the receiver operating characteristic curves (standard mean difference [95% confidence interval]: .75 [.69, .81], P < 0.00001). Overall, the increased plasma P-tau231 concentrations were found in relation to the early development and progression of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Biomarkers
7.
J Fungi (Basel) ; 9(6)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37367581

ABSTRACT

The genus Acrophialophora belongs to the family Chaetomiaceae. With the addition of new species and transferred species from other genera, the genus Acrophialophora has expanded. In this study, eight new species related to Acrophialophora were isolated from soil samples in China. Using muti-locus phylogenetic (ITS, LSU, tub2 and RPB2) analysis combined with morphological characteristics, eight new species (Acrophialophora curvata, A. fujianensis, A. guangdongensis, A. longicatenata, A. minuta, A. multiforma, A. rhombica, and A. yunnanensis) are described. Descriptions, illustrations, and notes of the new species are also provided.

8.
Front Neurosci ; 17: 1130730, 2023.
Article in English | MEDLINE | ID: mdl-37179559

ABSTRACT

Being isolated from the peripheral system by the blood-brain barrier, the brain has long been considered a completely impervious tissue. However, recent findings show that the gut microbiome (GM) influences gastrointestinal and brain disorders such as Alzheimer's disease (AD). Despite several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid plaques, neurofibrillary tangles, and oxidative stress, being proposed to explain the origin and progression of AD, the pathogenesis remains incompletely understood. Epigenetic, molecular, and pathological studies suggest that GM influences AD development and have endeavored to find predictive, sensitive, non-invasive, and accurate biomarkers for early disease diagnosis and monitoring of progression. Given the growing interest in the involvement of GM in AD, current research endeavors to identify prospective gut biomarkers for both preclinical and clinical diagnoses, as well as targeted therapy techniques. Here, we discuss the most recent findings on gut changes in AD, microbiome-based biomarkers, prospective clinical diagnostic uses, and targeted therapy approaches. Furthermore, we addressed herbal components, which could provide a new venue for AD diagnostic and therapy research.

9.
Rev Neurosci ; 34(6): 695-718, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37076953

ABSTRACT

Alzheimer's disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota-gut-brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. "MGBA-based multitherapy" is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient's condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. "MGBA-based multitherapy" offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Brain-Gut Axis , Brain , Inflammation/drug therapy
10.
Front Microbiol ; 14: 1074468, 2023.
Article in English | MEDLINE | ID: mdl-36876069

ABSTRACT

Cantharellus cibarius, an ectomycorrhizal fungus belonging to the Basidiomycetes, has significant medicinal and edible value, economic importance, and ecological benefits. However, C. cibarius remains incapable of artificial cultivation, which is thought to be due to the presence of bacteria. Therefore, much research has focused on the relationship between C. cibarius and bacteria, but rare bacteria are frequently overlooked, and symbiotic pattern and assembly mechanism of the bacterial community associated with C. cibarius remain unknown. In this study, the assembly mechanism and driving factors of both abundant and rare bacterial communities of C. cibarius were revealed by the null model. The symbiotic pattern of the bacterial community was examined using a co-occurrence network. Metabolic functions and phenotypes of the abundant and rare bacteria were compared using METAGENassist2, and the impacts of abiotic variables on the diversity of abundant and rare bacteria were examined using partial least squares path modeling. In the fruiting body and mycosphere of C. cibarius, there was a higher proportion of specialist bacteria compared with generalist bacteria. Dispersal limitation dominated the assembly of abundant and rare bacterial communities in the fruiting body and mycosphere. However, pH, 1-octen-3-ol, and total phosphorus of the fruiting body were the main driving factors of bacterial community assembly in the fruiting body, while available nitrogen and total phosphorus of the soil affected the assembly process of the bacterial community in the mycosphere. Furthermore, bacterial co-occurrence patterns in the mycosphere may be more complex compared with those in the fruiting body. Unlike the specific potential functions of abundant bacteria, rare bacteria may provide supplementary or unique metabolic pathways (such as sulfite oxidizer and sulfur reducer) to enhance the ecological function of C. cibarius. Notably, while volatile organic compounds can reduce mycosphere bacterial diversity, they can increase fruiting body bacterial diversity. Findings from this study further, our understanding of C. cibarius-associated microbial ecology.

11.
Curr Microbiol ; 79(12): 377, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329318

ABSTRACT

Hospital grassplot soil is an important repository of pathogenic fungi exposed to the hospital environment, and the diffusion of these fungi-containing soil particles in the air increases the risk of nosocomial fungal infections. In this study, from the perspective of soil microbes-plant holobiont, four medicinal plants Mirabilis jalapa, Artemisia argyi, Viola philippica, and Plantago depressa were used as materials, based on ITS high-throughput amplicon sequencing and simulated pot experiments to explore the effect of medicinal plants on the fungal community in hospital grassplot soil, in order to provide a new exploration for hospital grassplot soil remediation. The results showed that the fungal community ecological guilds in primary test soil was mainly pathogen, and the abundance of animal pathogen with potential threats to human reached 61.36%. After planting medicinal plants, the composition and function of soil fungal community changed significantly. Although this change varied with plant species and growth stages, all samples collected in the pot experiment showed that the pathogen abundance decreased and the saprotroph abundance increased. In addition, 45 of the 46 core fungal genera defined in all potted samples were present in primary test soil, and many of them were human potential pathogens. These findings imply that the idea of enhancing soil quality in hospital grassplot soil by planting specific plants is feasible. However, the initial fungal community of the hospital grassplot soil has a certain stability, and it is difficult to completely eliminate the threat of pathogenic fungi by planting medicinal plants.


Subject(s)
Mirabilis , Mycobiome , Plants, Medicinal , Animals , Humans , Soil , Soil Microbiology , Fungi/genetics , Hospitals
12.
J Alzheimers Dis ; 90(2): 495-512, 2022.
Article in English | MEDLINE | ID: mdl-36155521

ABSTRACT

The number of patients with Alzheimer's disease (AD) and non-Alzheimer's disease (non-AD) has drastically increased over recent decades. The amyloid cascade hypothesis attributes a vital role to amyloid-ß protein (Aß) in the pathogenesis of AD. As the main pathological hallmark of AD, amyloid plaques consist of merely the 42 and 40 amino acid variants of Aß (Aß42 and Aß40). The cerebrospinal fluid (CSF) biomarker Aß42/40 has been extensively investigated and eventually integrated into important diagnostic tools to support the clinical diagnosis of AD. With the development of highly sensitive assays and technologies, blood-based Aß42/40, which was obtained using a minimally invasive and cost-effective method, has been proven to be abnormal in synchrony with CSF biomarker values. This paper presents the recent progress of the CSF Aß42/40 ratio and plasma Aß42/40 for AD as well as their potential clinical application as diagnostic markers or screening tools for dementia.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Alzheimer Disease/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Prognosis
13.
Neurol Sci ; 43(11): 6433-6440, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35971044

ABSTRACT

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare autosomal dominant disorder caused by mutations in the colony-stimulating factor 1 receptor (CSF1R) gene. As of 2022, more than 100 different CSF1R mutations were reported in patients with CSF1R-related leukoencephalopathy. In this case report, we describe ALSP in a previously healthy 46-year-old woman who presented with memory impairment, poor interpersonal behavior, and decreased verbal fluency. Brain magnetic resonance imaging (MRI) showed confluent white matter changes and atrophy of the corpus callosum. Whole-exome sequencing identified a novel splice-site mutation (C.1858 + 5G > A) in intron 13 of the CSF1R gene, resulting in an intron 12 retention and an exon 13 deletion of CSF1R mRNA.


Subject(s)
Leukoencephalopathies , Female , Humans , Middle Aged , Brain/diagnostic imaging , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/genetics , Magnetic Resonance Imaging , Mutation/genetics , Neuroglia , Age of Onset
14.
Cell Rep Med ; 3(3): 100554, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35492873

ABSTRACT

Mutations in STK11/LKB1 in non-small cell lung cancer (NSCLC) are associated with poor patient responses to immune checkpoint blockade (ICB), and introduction of a Stk11/Lkb1 (L) mutation into murine lung adenocarcinomas driven by mutant Kras and Trp53 loss (KP) resulted in an ICB refractory syngeneic KPL tumor. Mechanistically this occurred because KPL mutant NSCLCs lacked TCF1-expressing CD8 T cells, a phenotype recapitulated in human STK11/LKB1 mutant NSCLCs. Systemic inhibition of Axl results in increased type I interferon secretion from dendritic cells that expanded tumor-associated TCF1+PD-1+CD8 T cells, restoring therapeutic response to PD-1 ICB in KPL tumors. This was observed in syngeneic immunocompetent mouse models and in humanized mice bearing STK11/LKB1 mutant NSCLC human tumor xenografts. NSCLC-affected individuals with identified STK11/LKB1 mutations receiving bemcentinib and pembrolizumab demonstrated objective clinical response to combination therapy. We conclude that AXL is a critical targetable driver of immune suppression in STK11/LKB1 mutant NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Animals , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lung Neoplasms/drug therapy , Mice , Programmed Cell Death 1 Receptor/genetics , Protein Serine-Threonine Kinases/genetics , Axl Receptor Tyrosine Kinase
15.
Front Microbiol ; 13: 855317, 2022.
Article in English | MEDLINE | ID: mdl-35591983

ABSTRACT

Medicinal plants are inhabited by diverse microbes in every compartment, and which play an essential role in host growth and development, nutrient absorption, synthesis of secondary metabolites, and resistance to biological and abiotic stress. However, the ecological processes that manage microbiota assembly and the phenotypic and metabolic characteristics of the core microbiota of Eucommia ulmoides remain poorly explored. Here, we systematically evaluated the effects of genotypes, compartment niches, and environmental conditions (climate, soil nutrition, and secondary metabolites) on the assembly of rhizosphere soil and bark associated bacterial communities. In addition, phenotypic and metabolic characteristics of E. ulmoides core microbiota, and their relationship with dominant taxa, rare taxa, and pharmacologically active compounds were deciphered. Results suggested that microbiota assembly along the two compartments were predominantly shaped by the environment (especially pH, relative humidity, and geniposide acid) and not by host genotype or compartment niche. There were 690 shared genera in the rhizosphere soil and bark, and the bark microbiota was mainly derived from rhizosphere soil. Core microbiota of E. ulmoides was a highly interactive "hub" microbes connecting dominant and rare taxa, and its phenotypic characteristics had a selective effect on compartment niches. Metabolic functions of the core microbiota included ammonia oxidation, nitrogen fixation, and polyhydroxybutyrate storage, which are closely related to plant growth or metabolism. Moreover, some core taxa were also significantly correlated with three active compounds. These findings provide an important scientific basis for sustainable agricultural management based on the precise regulation of the rhizosphere soil and bark microbiota of E. ulmoides.

16.
Case Rep Neurol ; 14(3): 404-412, 2022.
Article in English | MEDLINE | ID: mdl-36636271

ABSTRACT

Dementia is a gradual and irreversible loss of higher mental function, particularly memory. Dural arteriovenous fistulas (DAVFs) are one of the rare causes of a rapid decline in cognitive function, which can be curable. DAVFs are pathological shunts between the dural artery and the dural venous sinus, dural vein, or cortical vein. Here, we present a case that initially manifested nausea and dizziness and developed rapidly progressive dementia caused by DAVFs in the left transverse sinus-sigmoid sinus junction area and the sinus confluence area, combined with cerebral venous sinus thrombosis. Moreover, our case has multiple DAVFs that cause bilateral thalamic lesions and rapidly progressive dementia called thalamic dementia, which is infrequent and often misdiagnosed. His symptoms have improved after receiving endovascular embolization treatment. In addition to presenting our case, we conducted a systemic literature review to summarize how familiarity with the manifestation and early diagnosis of bilateral thalamic lesions caused by DAVFs can lead to earlier and more effective therapy.

17.
Angew Chem Int Ed Engl ; 60(50): 26320-26326, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34661332

ABSTRACT

Herein, we report that genetically programmable fusion cellular vesicles (Fus-CVs) displaying high-affinity SIRPα variants and PD-1 can activate potent antitumor immunity through both innate and adaptive immune effectors. Dual-blockade of CD47 and PD-L1 with Fus-CVs significantly increases the phagocytosis of cancer cells by macrophages, promotes antigen presentation, and activates antitumor T-cell immunity. Moreover, the bispecific targeting design of Fus-CVs ensures better targeting on tumor cells, but less on other cells, which reduces systemic side effects and enhances therapeutic efficacies. In malignant melanoma and mammary carcinoma models, we demonstrate that Fus-CVs significantly improve overall survival of model animals by inhibiting post-surgery tumor recurrence and metastasis. The Fus-CVs are suitable for protein display by genetic engineering. These advantages, integrated with other unique properties inherited from source cells, make Fus-CVs an attractive platform for multi-targeting immune checkpoint blockade therapy.


Subject(s)
Immune Checkpoint Inhibitors/immunology , Immunotherapy , Neoplasms/therapy , Recombinant Fusion Proteins/immunology , Animals , B7-H1 Antigen/immunology , CD47 Antigen/immunology , Cell Line, Tumor , Female , Mice , Neoplasms/immunology , Recombinant Fusion Proteins/genetics
18.
Pol J Microbiol ; 70(3): 373-385, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34584531

ABSTRACT

Cantharellus cibarius is a widely distributed, popular, edible fungus with high nutritional and economic value. However, significant challenges persist in the microbial ecology and artificial cultivation of C. cibarius. Based on the 16S rRNA sequencing data, this study analyzed bacterial community structures and diversity of fruit bodies and rhizomorph parts of C. cibarius and mycosphere samples (collected in the Wudang District, Guiyang, Guizhou Province, China). It explored the composition and function of the core bacterial taxa. The analyzed results showed that the rhizomorph bacterial community structure was similar to mycosphere, but differed from the fruit bodies. Members of the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex had the highest abundance in the fruit bodies. However, they were either absent or low in abundance in the rhizomorphs and mycosphere. At the same time, members of the Burkholderia-Caballeronia-Paraburkholderia complex were abundant in the fruit bodies and rhizomorphs parts of C. cibarius, as well as mycosphere. Through functional annotation of core bacterial taxa, we found that there was an apparent trend of potential functional differentiation of related bacterial communities in the fruit body and rhizomorph: potential functional groups of core bacterial taxa in the fruit bodies centered on nitrogen fixation, nitrogen metabolism, and degradation of aromatic compounds, while those in rhizomorphs focused on aerobic chemoheterotrophy, chemoheterotrophy, defense against soil pathogens, decomposition of complex organic compounds, and uptake of insoluble inorganic compounds. The analysis of functional groups of bacteria with different structures is of great significance to understand that bacteria promote the growth and development of C. cibarius.


Subject(s)
Bacterial Physiological Phenomena , Basidiomycota , Biodiversity , Microbial Interactions , Bacteria/genetics , Microbial Interactions/physiology , RNA, Ribosomal, 16S
19.
Sci Total Environ ; 790: 148091, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34380268

ABSTRACT

The core microbiome, as a unique group of microorganisms, is an emerging research hotspot that provides a new opportunity to improve growth and production of a host. However, the subjectivity associated with the concept of "core microbiome" means there is currently no uniform definition method for the core microbiome. In this study, the strengths and limitations of four commonly used definition methods for the core microbiome were explored from composition to function based on the 16S rRNA gene dataset of Eucommia ulmoides bark from 25 different biogeographical regions in China. There were differences in the composition of the core microbiomes defined by the different methods. The four definition methods of phylogeny, membership, composition, and network connection contained 274, 10, 5, and 5 core OTUs (operational taxonomic units), respectively. In contrast, the core microbiomes defined by different methods displayed similarities in function. In addition, different definition methods showed varying preferences for abundant taxa, intermediate taxa, and rare taxa. Some core taxa defined by the definition method of phylogeny were significantly associated with pharmacologically active ingredients of E. ulmoides bark. The findings of this study suggest that although the core microbiomes defined by different methods have preferences in composition and function, the term refers to a group of microbes that are particularly notable and important for host-associated microbiomes. Therefore, we propose: (I) The definition method of the core microbiome should be selected according to the ecological problems faced; (II) A combination of multiple methods may comprehensively reveal the core microbiome at different levels of the host, and may also facilitate understanding of the ecological and evolutionary processes that govern host-microbe interactions.


Subject(s)
Eucommiaceae , Microbiota , Phylogeny , Plant Bark , RNA, Ribosomal, 16S/genetics
20.
J Alzheimers Dis ; 79(3): 1317-1325, 2021.
Article in English | MEDLINE | ID: mdl-33427748

ABSTRACT

BACKGROUND: Florbetapir (AV45) and fluorodeoxyglucose (FDG) PET imaging are valuable techniques to detect the amyloid-ß (Aß) load and brain glucose metabolism in patients with Alzheimer's disease (AD). OBJECTIVE: The purpose of this study is to access the characteristics of Aß load and FDG metabolism in brain for further investigating their relationships with cognitive impairment in AD patients. METHODS: Twenty-seven patients with AD (average 70.6 years old, N = 13 male, N = 14 female) were enrolled in this study. These AD patients underwent the standard clinical assessment and received detailed imaging examinations of the nervous system by using Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MOCA), 18F-AV45, and 18F-FDG PET scans. RESULTS: Of 27 AD patients, 22 patients (81.5%) showed significantly increases in Aß load and 26 patients (96.3%) had significantly reductions in FDG metabolism. The moderate AD patients had more brain areas of reduced FDG metabolism and more severe reductions in some regions compared to mild AD patients, with no differences in Aß load observed. Moreover, the range and degree of reduced FDG metabolism in several regions were positively correlated with the total score of MMSE or MOCA, whereas the range of Aß load did not. No correlation was found between the range of Aß load and the range of reduced FDG metabolism in this study. CONCLUSION: The reduction in FDG metabolisms captured by 18F-FDG imaging can be used as a potential biomarker for AD diagnosis in the future. 18F-AV45 imaging did not present valuable evidence for evaluating AD patient in this study.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognition , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Aniline Compounds , Brain/metabolism , Brain/pathology , Ethylene Glycols , Fluorodeoxyglucose F18 , Humans , Male , Mental Status and Dementia Tests , Neuroimaging , Plaque, Amyloid/diagnosis , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Positron-Emission Tomography , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...