Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 14(1): 4570, 2024 02 25.
Article in English | MEDLINE | ID: mdl-38403647

ABSTRACT

The intensification of heatwaves dues to climate change is a significant concern, with substantial impacts on ecosystems and human health, particularly in developing countries. This study utilizes NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6) and projected population data accounting for China's population policies to project changes in various grades of heatwaves (light, moderate, and severe) and the population exposure to heatwaves (PEH) in Xinjiang under three shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The results show that the number of days and intensity of heatwaves in Xinjiang are projected to increase. Heatwaves occurring in Xinjiang will predominantly be severe heatwaves (SHW) in the long-term under the SSP5-8.5 scenario, and the number of SHW days projected to increase by 62 ± 18.4 days compared to the reference period. Changes in heatwaves are anticipated to influence PEH, estimating population exposure to light, moderate, and severe heatwaves (LPEH, MPEH, and SPEH) at 534.6 ± 64 million, 496.2 ± 43.5 million, and 1602.4 ± 562.5 million person-days, respectively, in the long-term under the SSP5-8.5 scenario. The spatial distribution of PEH is projected to be consistent with that of the reference period, with high values persisting in Urumqi, Kashgar and Hotan. Changes in PEH are primarily driven by climate effects, followed by interactive effects, while population effects contribute the least. Therefore, mitigating climate change is crucial to reduce the PEH in Xinjiang.


Subject(s)
Climate Change , Ecosystem , Humans , China/epidemiology , Forecasting
3.
Sci Rep ; 13(1): 7401, 2023 05 06.
Article in English | MEDLINE | ID: mdl-37149675

ABSTRACT

Heatwaves have pronounced impacts on human health and the environment on a global scale. Although the characteristics of heatwaves has been well documented, there still remains a lack of dynamic studies of population exposure to heatwaves (PEH), particularly in the arid regions. In this study, we analyzed the spatio-temporal evolution characteristics of heatwaves and PEH in Xinjiang using the daily maximum temperature (Tmax), relative humidity (RH), and high-resolution gridded population datasets. The results revealed that the heatwaves in Xinjiang occur more continually and intensely from 1961 to 2020. Furthermore, there is substantial spatial heterogeneity of heatwaves with eastern part of the Tarim Basin, Turpan, and Hami been the most prone areas. The PEH in Xinjiang showed an increasing trend with high areas mainly in Kashgar, Aksu, Turpan, and Hotan. The increase in PEH is mainly contributed from population growth, climate change and their interaction. From 2001 to 2020, the climate effect contribution decreased by 8.5%, the contribution rate of population and interaction effects increased by 3.3% and 5.2%, respectively. This work provides a scientific basis for the development of policies to improve the resilience against hazards in arid regions.


Subject(s)
Climate Change , Desert Climate , Humans , China/epidemiology , Population Growth , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...