Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 75(10): 2867-2881, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38393826

ABSTRACT

Phosphorus (P) is an essential nutrient for plant growth and yield. Low phosphate use efficiency makes it important to clarify the molecular mechanism of low P stress. In our previous studies, a P efficiency gene ZmAPRG was identified. Here, we further screened the upstream regulator ZmNF-YC1 of ZmAPRG by yeast one hybrid (Y1H) assay, and found it was a low inorganic phosphorus (Pi)-inducible gene. The results of dual luciferase assays, expression analysis, and ChIP-qPCR assays showed that ZmNF-YC1 is a positive regulator of ZmAPRG. Overexpression of ZmNF-YC1 improved low P tolerance, whereas knockout of ZmNF-YC1 decreased low P tolerance in maize. Bimolecular fluorescence complementation (BiFC), yeast two hybrid (Y2H) assay, and yeast three hybrid (Y3H) assay further showed that ZmNF-YC1 can interact with ZmNF-YB14, and recruit ZmNF-YA4/10 to form NF-Y complexes. Transcriptional activation assay confirmed that the NF-Y complexes can activate the promoters of ZmAPRG. Meanwhile, transcriptome and metabolome analyses indicated that overexpression of ZmAPRG improves low P tolerance by regulating lipid composition and photosynthetic capacity, and chlorophyll fluorescence parameters provided evidence in support of this hypothesis. Furthermore, overexpression of ZmAPRG increased grain yield in inbred and hybrid maize under low P conditions. Taken together, our research revealed a low P tolerance mechanism of the ZmNF-YC1-ZmAPRG pathway.


Subject(s)
Phosphorus , Plant Proteins , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/growth & development , Zea mays/physiology , Phosphorus/metabolism , Phosphorus/deficiency , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122064, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36347165

ABSTRACT

In this paper, water-soluble cysteamine (CA)-capping CdSe quantum dots (CA-CdSe) could be used as a continuous fluorescent sensor. The CA-CdSe QDs can respond to Ag+ with a detection limit of 54.1 nM. Interestingly, CA-CdSe quantum dots combined with Ag+ to generate a new nano-fluorescence sensor-Ag+ modified CA-CdSe QDs (Ag+@CA-CdSe). Ag+@CA-CdSe can detect glutathione (GSH) with good sensitivity and anti-interference performance. The detection limit of Ag+@CA-CdSe fluorescenct sensor for GSH is as low as 0.74 µM. In addition, the novel nano-fluorescent sensor Ag+@CA-CdSe exhibited good cell permeability and was successfully applied to detect exogenous and endogenous GSH concentrations in cells. It could distinguish cancerous and normal cells by in vitro cell fluorescence imaging.


Subject(s)
Neoplasms , Quantum Dots , Fluorescent Dyes , Glutathione , Spectrometry, Fluorescence/methods , Cysteamine
3.
Biochem Biophys Res Commun ; 602: 15-20, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35247699

ABSTRACT

MYB genes regulate several different aspects of metabolism and development. However, few studies have reported the involvement of MYBs-CesAs network in the regulation of maize kernel development. In this study, yeast one-hybrid (Y1H) assays and dual-luciferase reporter assays showed that ZmMYB109 activated the expression of ZmCesA5 by directly binding to its promoter. Real-time quantitative PCR (RT-qPCR) and transcriptome analyses showed that ZmMYB109 expression increased in ZmCesA5-OE kernels and decreased in ZmCesA5-KO kernels. Overexpression of ZmCesA5 produced heavier kernels, whereas loss of function of ZmCesA5 affected starch and sucrose metabolism, resulting in weight reduction of the maize kernels. Collectively, these findings suggest that a new network containing MYB109-ZmCesA5 is involved in kernel development.


Subject(s)
Starch , Zea mays , Carbohydrate Metabolism , Gene Expression Profiling , Starch/metabolism , Zea mays/metabolism
4.
J Fluoresc ; 32(3): 1099-1107, 2022 May.
Article in English | MEDLINE | ID: mdl-35305208

ABSTRACT

A new hybrid fluorescent nanosensor (Flu@Mea-CdS) for the Cu2+ detection in aqueous solution was constructed through fluorescence resonance energy transfer (FRET). The Flu@Mea-CdS was fabricated by amide linkage between CdS quantum dots capped with cysteamine (Mea-CdS) and fluorescein. With the formation of FRET process from Mea-CdS quantum dots to fluorescein, the fluorescence intensity of fluorescein at 520 nm was significantly enhanced. In addition, the sensor based on FRET has high selectivity for Cu2+ ions detection. With the presence of Cu2+ ions, Cu2+ ions were transferred to Cu2S by the reaction with Flu@Mea-CdS, which caused the inhibition of FRET process and quenched the fluorescence signal of 520 nm. Compared with Mea-CdS quantum dots, the Flu@Mea-CdS sensor has a lower detection limit for Cu2+. The linear range is 4-14 µM, and the detection limit is 0.17 µM. The sensor has been successfully applied to the detection of Cu2+ ions in practical samples, which shows its potential application value in environmental monitoring.


Subject(s)
Quantum Dots , Carbon , Copper , Fluorescein , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Ions , Spectrometry, Fluorescence
5.
J Exp Bot ; 72(13): 4757-4772, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33831218

ABSTRACT

Leaf angle and leaf orientation value (LOV) are critical agronomic traits for maize plant architecture. The functions of NUCLEAR FACTOR Y (NF-Y) members in regulating plant architecture have not been reported yet. Here, we identified a regulator of maize plant architecture, NF-Y subunit C13 (ZmNF-YC13). ZmNF-YC13 was highly expressed in the leaf base zone of maize plants. ZmNF-YC13 overexpressing plants showed upright leaves with narrow leaf angle and larger LOV, while ZmNF-YC13 knockout plants had larger leaf angle and smaller LOV compared with wild-type plants. The changes in plant architecture were due to the changes in the expression of cytochrome P450 family members. ZmNF-YC13 interacts with two NF-Y subunit B members (ZmNF-YB9 and ZmNF-YB10) of the LEAFY COTYLEDON1 sub-family, and further recruits NF-Y subunit A (ZmNF-YA3) to form two NF-Y complexes. The two complexes can both activate the promoters of transcriptional repressors (ZmWRKY76 and ZmBT2), and the promoters of PLASTOCHRON group genes can be repressed by ZmWRKY76 and ZmBT2 in maize protoplasts. We propose that ZmNF-YC13 functions as a transcriptional regulator and, together with ZmNF-YBs and ZmNF-YA3, affects plant architecture by regulating the expression of ZmWRKY76 and ZmBT2, which repress the expression of cytochrome P450 family members in PLASTOCHRON branch.


Subject(s)
Transcription Factors , Zea mays , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Zea mays/genetics , Zea mays/metabolism
6.
Breed Sci ; 70(2): 212-220, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32523403

ABSTRACT

Zeaxanthin, a natural fat-soluble pigment, not only increases plant resistance, but also has vital significance for human health. However, quantitative trait loci (QTL) and the epistatic effects of zeaxanthin concentration in maize kernel have not been well studied. To identify QTLs and analyse the epistatic effects of zeaxanthin concentration in maize kernel, two sets of segregating generations derived from the cross between HuangC (a high zeaxanthin concentration inbred line) and Rezi1 (a low zeaxanthin concentration inbred line) were evaluated in three different environments. One major-effect QTL, qZea6a, explains 41.4-71.4% of the phenotypic variation and two QTLs, qZea4a and qZea3a, show LOD > 3 for zeaxanthin concentration detected over two generations and three different environments. Four of the ten QTL pairs show epistatic effects, explaining 7.34-14.3% of the phenotypic variance. Furthermore, additivity was the major allelic action at zeaxanthin concentration QTLs located in F2 and F2:3 populations and plants with homozygous HuangC alleles have a strong genetic ability in enhancing zeaxanthin concentration in maize kernel. These results will contribute to understanding these complex loci better and provide awareness about zeaxanthin concentration to maize breeders and scientists involved in maize research.

SELECTION OF CITATIONS
SEARCH DETAIL
...