Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Cyborg Bionic Syst ; 5: 0075, 2024.
Article in English | MEDLINE | ID: mdl-38440319

ABSTRACT

Leveraging the power of artificial intelligence to facilitate an automatic analysis and monitoring of heart sounds has increasingly attracted tremendous efforts in the past decade. Nevertheless, lacking on standard open-access database made it difficult to maintain a sustainable and comparable research before the first release of the PhysioNet CinC Challenge Dataset. However, inconsistent standards on data collection, annotation, and partition are still restraining a fair and efficient comparison between different works. To this line, we introduced and benchmarked a first version of the Heart Sounds Shenzhen (HSS) corpus. Motivated and inspired by the previous works based on HSS, we redefined the tasks and make a comprehensive investigation on shallow and deep models in this study. First, we segmented the heart sound recording into shorter recordings (10 s), which makes it more similar to the human auscultation case. Second, we redefined the classification tasks. Besides using the 3 class categories (normal, moderate, and mild/severe) adopted in HSS, we added a binary classification task in this study, i.e., normal and abnormal. In this work, we provided detailed benchmarks based on both the classic machine learning and the state-of-the-art deep learning technologies, which are reproducible by using open-source toolkits. Last but not least, we analyzed the feature contributions of best performance achieved by the benchmark to make the results more convincing and interpretable.

2.
Biochem Biophys Res Commun ; 636(Pt 1): 121-124, 2022 12 25.
Article in English | MEDLINE | ID: mdl-36332473

ABSTRACT

IGF1R plays an important role in regulating cellular metabolism and cell growth, and has been identified as an anti-cancer and diabetes drug target. Although research have been reported many crystal and cryo-EM structures of IGF1R, the mechanism of ligand binding remains controversial, mainly because the structure differences among its cryo-EM, crystal and homologous protein insulin receptor structures. Here, we further determined one new high-resolution symmetric cryo-EM structure of ligand-bound IGF1R and be the first to prove that the receptor could bind to two IGFI molecules by single particle cryo-electron microscopy. And the structure is very different from its homologous protein insulin receptor: the two ligands just exist at the binding site 2 with saturating ligand conditions. Then, our findings resolved the major dispute about the comformational changes of IGF1R, and proposed a new theory how IGF1R binds to its ligands. Meanwhile, these findings imply more attention may be needed to study the relationship between the special conformation and their corresponding physiological functions in future.


Subject(s)
Insulin-Like Growth Factor I , Receptor, IGF Type 1 , Humans , Cryoelectron Microscopy , Hormones , Insulin-Like Growth Factor I/chemistry , Ligands , Protein Domains , Receptor, IGF Type 1/chemistry , Receptor, Insulin/chemistry
3.
Biochem Biophys Res Commun ; 624: 89-94, 2022 10 08.
Article in English | MEDLINE | ID: mdl-35940132

ABSTRACT

The human VPS10 domain-containing receptor SorCS3 belongs to the Vps10p-domain receptor family and is an important receptor for regulating normal cellular functions via protein sorting. Here, we determined the cryo-EM structure of the full-length SorCS3 receptor and further found that there were at least three distinct conformations (monomer, M-shaped dimer and N-shaped dimer) of SorCS3 in the apo state. The differences between the two dimer conformations were caused by PKD1-2 assembly. In contrast to its homologous proteins, the conserved residues GLN198, ARG678, TYR430, GLU1020 and ASP1024 may be key points for its dimerization and for protein/polypeptide binding. These results showed the structural details of apo-SorCS3, which provides a foundation for elucidating the mechanism of protein sorting.


Subject(s)
Carrier Proteins , Nerve Tissue Proteins , Carrier Proteins/metabolism , Cryoelectron Microscopy , Humans , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Transport , Receptors, Cell Surface/metabolism
4.
PLoS One ; 17(1): e0261462, 2022.
Article in English | MEDLINE | ID: mdl-34986181

ABSTRACT

BACKGROUND: Cell-based therapy has long been considered a promising strategy for the treatment of heart failure (HF). However, its effectiveness in the clinical setting is now doubted. Because previous meta-analyses provided conflicting results, we sought to review all available data focusing on cell type and trial design. METHODS AND FINDINGS: The electronic databases PubMed, Cochrane library, ClinicalTrials.gov, and EudraCT were searched for randomized controlled trials (RCTs) utilizing cell therapy for HF patients from January 1, 2000 to December 31, 2020. Forty-three RCTs with 2855 participants were identified. The quality of the reported study design was assessed by evaluating the risk-of-bias (ROB). Primary outcomes were defined as mortality rate and left ventricular ejection fraction (LVEF) change from baseline. Secondary outcomes included both heart function data and clinical symptoms/events. Between-study heterogeneity was assessed using the I2 index. Subgroup analysis was performed based on HF type, cell source, cell origin, cell type, cell processing, type of surgical intervention, cell delivery routes, cell dose, and follow-up duration. Only 10 of the 43 studies had a low ROB for all method- and outcome parameters. A higher ROB was associated with a greater increase in LVEF. Overall, there was no impact on mortality for up to 12 months follow-up, and a clinically irrelevant average LVEF increase by LVEF (2.4%, 95% CI = 0.75-4.05, p = 0.004). Freshly isolated, primary cells tended to produce better outcomes than cultured cell products, but there was no clear impact of the cell source tissue, bone marrow cell phenotype or cell chricdose (raw or normalized for CD34+ cells). A meaningful increase in LVEF was only observed when cell therapy was combined with myocardial revascularization. CONCLUSIONS: The published results suggest a small increase in LVEF following cell therapy for heart failure, but publication bias and methodologic shortcomings need to be taken into account. Given that cardiac cell therapy has now been pursued for 20 years without real progress, further efforts should not be made. STUDY REGISTRY NUMBER: This meta-analysis is registered at the international prospective register of systematic reviews, number CRD42019118872.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/trends , Heart Failure/therapy , Heart Failure/mortality , Hospitalization , Humans , Myocardial Infarction/therapy , Observer Variation , Quality of Life , Randomized Controlled Trials as Topic , Research Design , Stroke Volume , Systematic Reviews as Topic , Treatment Outcome , Ventricular Function, Left
5.
Front Cardiovasc Med ; 8: 632728, 2021.
Article in English | MEDLINE | ID: mdl-34095245

ABSTRACT

Background: Mesenchymal stromal cells (MSCs) are an attractive cell type for cell therapy given their immunomodulatory, anti-fibrotic, and endothelial-protective features. The heparin sulfate proteoglycan, syndecan-2/CD362, has been identified as a functional marker for MSC isolation, allowing one to obtain a homogeneous cell product that meets regulatory requirements for clinical use. We previously assessed the impact of wild-type (WT), CD362-, and CD362+ MSCs on local changes in protein distribution in left ventricular (LV) tissue and on LV function in an experimental model of early-onset diabetic cardiomyopathy. The present study aimed to further explore their impact on mechanisms underlying diastolic dysfunction in this model. Materials: For this purpose, 1 × 106 WT, CD362-, or CD362+ MSCs were intravenously (i.v.) injected into 20-week-old diabetic BKS.Cg-m+/+Leprdb/BomTac, i.e., db/db mice. Control animals (db+/db) were injected with the equivalent volume of phosphate-buffered saline (PBS) alone. After 4 weeks, mice were sacrificed for further analysis. Results: Treatment with all three MSC populations had no impact on blood glucose levels in db/db mice. WT, CD362-, and CD362+ MSC application restored LV nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) levels in db/db mice, which correlated with a reduction in cardiomyocyte stiffness. Furthermore, all stromal cells were able to increase arteriole density in db/db mice. The effect of CD362+ MSCs on NO and cGMP levels, cardiomyocyte stiffness, and arteriole density was less pronounced than in mice treated with WT or CD362- MSCs. Analysis of collagen I and III protein expression revealed that fibrosis had not yet developed at this stage of experimental diabetic cardiomyopathy. All MSCs reduced the number of cardiac CD3+ and CD68+ cells in db/db mice, whereas only splenocytes from CD362-- and CD362+-db/db mice exhibited a lower pro-fibrotic potential compared to splenocytes from db/db mice. Conclusion: CD362+ MSC application decreased cardiomyocyte stiffness, increased myocardial NO and cGMP levels, and increased arteriole density, although to a lesser extent than WT and CD362- MSCs in an experimental model of early-onset diabetic cardiomyopathy without cardiac fibrosis. These findings suggest that the degree in improvement of cardiomyocyte stiffness following CD362+ MSC application was insufficient to improve diastolic function.

6.
Proteomics Clin Appl ; 15(1): e2000050, 2021 01.
Article in English | MEDLINE | ID: mdl-33068073

ABSTRACT

PURPOSE: Mesenchymal stromal cells (MSC) are an attractive tool for treatment of diabetic cardiomyopathy. Syndecan-2/CD362 has been identified as a functional marker for MSC isolation. Imaging mass spectrometry (IMS) allows for the characterization of therapeutic responses in the left ventricle. This study aims to investigate whether IMS can assess the therapeutic effect of CD362+ -selected MSC on early onset experimental diabetic cardiomyopathy. EXPERIMENTAL DESIGN: 1 × 106 wild type (WT), CD362- , or CD362+ MSC are intravenously injected into db/db mice. Four weeks later, mice are hemodynamically characterized and subsequently sacrificed for IMS combined with bottom-up mass spectrometry, and isoform and phosphorylation analyses of cardiac titin. RESULTS: Overall alterations of the cardiac proteome signatures, especially titin, are observed in db/db compared to control mice. Interestingly, only CD362+ MSC can overcome the reduced titin intensity distribution and shifts the isoform ratio toward the more compliant N2BA form. In contrast, WT and CD362- MSCs improve all-titin phosphorylation and protein kinase G activity, which is reflected in an improvement in diastolic performance. CONCLUSIONS AND CLINICAL RELEVANCE: IMS enables the characterization of differences in titin intensity distribution following MSC application. However, further analysis of titin phosphorylation is needed to allow for the assessment of the therapeutic efficacy of MSC.


Subject(s)
Diabetic Cardiomyopathies/pathology , Mesenchymal Stem Cells , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Humans , Mice
7.
Chin J Integr Med ; 26(9): 663-669, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32740825

ABSTRACT

OBJECTIVE: To select potential molecules that can target viral spike proteins, which may potentially interrupt the interaction between the human angiotension-converting enzyme 2 (ACE2) receptor and viral spike protein by virtual screening. METHODS: The three-dimensional (3D)-coordinate file of the receptor-binding domain (RBD)-ACE2 complex for searching a suitable docking pocket was firstly downloaded and prepared. Secondly, approximately 15,000 molecular candidates were prepared, including US Food and Drug Administration (FDA)-approved drugs from DrugBank and natural compounds from Traditional Chinese Medicine Systems Pharmacology (TCMSP), for the docking process. Then, virtual screening was performed and the binding energy in Autodock Vina was calculated. Finally, the top 20 molecules with high binding energy and their Chinese medicine (CM) herb sources were listed in this paper. RESULTS: It was found that digitoxin, a cardiac glycoside in DrugBank and bisindigotin in TCMSP had the highest docking scores. Interestingly, two of the CM herbs containing the natural compounds that had relatively high binding scores, Forsythiae fructus and Isatidis radix, are components of Lianhua Qingwen (), a CM formula reportedly exerting activity against severe acute respiratory syndrome (SARS)-Cov-2. Moreover, raltegravir, an HIV integrase inhibitor, was found to have a relatively high binding score. CONCLUSIONS: A class of compounds, which are from FDA-approved drugs and CM natural compounds, that had high binding energy with RBD of the viral spike protein. Our work provides potential candidates for other researchers to identify inhibitors to prevent SARS-CoV-2 infection, and highlights the importance of CM and integrative application of CM and Western medicine on treating COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Drug Repositioning/methods , Drugs, Chinese Herbal/pharmacology , Glycoproteins/drug effects , Imaging, Three-Dimensional , Molecular Docking Simulation/methods , Pneumonia, Viral/drug therapy , COVID-19 , China , Computer Simulation , Coronavirus Infections/diagnosis , Glycoproteins/metabolism , Humans , Mass Screening/methods , Pandemics , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/diagnosis , Protein Binding , United States , United States Food and Drug Administration
8.
Exp Ther Med ; 19(4): 2887-2894, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32256773

ABSTRACT

Chronic aristolochic acid nephropathy (CAAN) is characterized by widespread apoptosis and interstitial fibrosis, which severely impairs kidney function. mTOR is crucial for cell proliferation and protein synthesis. In the present study, the therapeutic effects of blockade of mTOR activity by rapamycin on aristolochic acid nephropathy were investigated. In vitro experiments to determine cell apoptosis and cell cycle alterations caused by aristolochic acid (AA)-induced injury were conducted on three groups of cells: Untreated control, AAI (treated with aristolochic acid I), and AAI + rapamycin (RMS). In vivo experiments were conducted in a CAAN mouse model. One group of mice was treated with AAI (the CAAN group), while another group was treated with AAI and rapamycin (the treatment group). Kidney function and pathological changes in these mice were assessed by serum creatinine and urea nitrogen analysis. Hematoxylin and eosin staining of renal tissue was performed to evaluate the treatment effects of rapamycin. Western blotting and immunohistochemical staining were used to explore the mechanisms by which rapamycin inhibited cell proliferation, apoptosis and tissue fibrosis. In the in vitro experiments, rapamycin prevented AAI-induced cell apoptosis and G2/M checkpoint cell cycle arrest. In the in vivo experiments, the treatment group exhibited lower serum creatinine and urea nitrogen, less extensive tubular atrophy and increased amount of glomerulus. Additionally, western blotting and immunohistochemical staining showed that the treatment group exhibited decreased expression levels of fibrosis-, proliferation- and apoptosis-related proteins compared with the CAAN group. The findings suggest that rapamycin can ameliorate kidney injury induced by AAI via blockade of mTOR, and thus could be a therapeutic strategy for patients with CAAN.

9.
Sci Rep ; 10(1): 3629, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32108156

ABSTRACT

Left ventricular (LV) contraction is characterized by shortening and thickening of longitudinal and circumferential fibres. To date, it is poorly understood how LV deformation is altered in the pathogenesis of streptozotocin (STZ)-induced type 1 diabetes mellitus-associated diabetic cardiomyopathy and how this is associated with changes in cardiac structural composition. To gain further insights in these LV alterations, eight-week-old C57BL6/j mice were intraperitoneally injected with 50 mg/kg body weight STZ during 5 consecutive days. Six, 9, and 12 weeks (w) post injections, echocardiographic analysis was performed using a Vevo 3100 device coupled to a 30-MHz linear-frequency transducer. Speckle-tracking echocardiography (STE) demonstrated impaired global longitudinal peak strain (GLS) in STZ versus control mice at all time points. 9w STZ animals displayed an impaired global circumferential peak strain (GCS) versus 6w and 12w STZ mice. They further exhibited decreased myocardial deformation behaviour of the anterior and posterior base versus controls, which was paralleled with an elevated collagen I/III protein ratio. Additionally, hypothesis-free proteome analysis by imaging mass spectrometry (IMS) identified regional- and time-dependent changes of proteins affecting sarcomere mechanics between STZ and control mice. In conclusion, STZ-induced diabetic cardiomyopathy changes global cardiac deformation associated with alterations in cardiac sarcomere proteins.


Subject(s)
Diabetic Cardiomyopathies/diagnostic imaging , Ventricular Dysfunction, Left/diagnostic imaging , Animals , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Echocardiography , Heart/diagnostic imaging , Heart/physiopathology , Heart Ventricles/chemistry , Heart Ventricles/physiopathology , Humans , Male , Mass Spectrometry , Mice , Myocardium/chemistry , Myocardium/metabolism , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left
10.
Cardiovasc Res ; 116(10): 1756-1766, 2020 08 01.
Article in English | MEDLINE | ID: mdl-31598635

ABSTRACT

AIMS: The coxsackievirus B3 (CVB3) mouse myocarditis model is the standard model for investigation of virus-induced myocarditis but the pancreas, rather than the heart, is the most susceptible organ in mouse. The aim of this study was to develop a CVB3 mouse myocarditis model in which animals develop myocarditis while attenuating viral infection of the pancreas and the development of severe pancreatitis. METHODS AND RESULTS: We developed the recombinant CVB3 variant H3N-375TS by inserting target sites (TS) of miR-375, which is specifically expressed in the pancreas, into the 3'UTR of the genome of the pancreo- and cardiotropic CVB3 variant H3. In vitro evaluation showed that H3N-375TS was suppressed in pancreatic miR-375-expressing EndoC-ßH1 cells >5 log10, whereas its replication was not suppressed in isolated primary embryonic mouse cardiomyocytes. In vivo, intraperitoneal (i.p.) administration of H3N-375TS to NMRI mice did not result in pancreatic or cardiac infection. In contrast, intravenous (i.v.) administration of H3N-375TS to NMRI and Balb/C mice resulted in myocardial infection and acute and chronic myocarditis, whereas the virus was not detected in the pancreas and the pancreatic tissue was not damaged. Acute myocarditis was characterized by myocardial injury, inflammation with mononuclear cells, induction of proinflammatory cytokines, and detection of replicating H3N-375TS in the heart. Mice with chronic myocarditis showed myocardial fibrosis and persistence of H3N-375TS genomic RNA but no replicating virus in the heart. Moreover, H3N-375TS infected mice showed distinctly less suffering compared with mice that developed pancreatitis and myocarditis after i.p. or i.v application of control virus. CONCLUSION: In this study, we demonstrate that by use of the miR-375-sensitive CVB3 variant H3N-375TS, CVB3 myocarditis can be established without the animals developing severe systemic infection and pancreatitis. As the H3N-375TS myocarditis model depends on pancreas-attenuated H3N-375TS, it can easily be used in different mouse strains and for various applications.


Subject(s)
Coxsackievirus Infections/virology , Enterovirus B, Human/pathogenicity , Myocarditis/virology , Myocytes, Cardiac/virology , Pancreas/virology , Pancreatitis/virology , 3' Untranslated Regions , Animals , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/pathology , Disease Models, Animal , Enterovirus B, Human/genetics , Female , Fibrosis , Genotype , HEK293 Cells , HeLa Cells , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , MicroRNAs/genetics , Myocarditis/metabolism , Myocarditis/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Pancreatitis/prevention & control , Phenotype , Virulence , Virus Replication
11.
Med Sci Monit ; 25: 8733-8743, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31741467

ABSTRACT

BACKGROUND MicroRNAs (miRNAs), which modulate the expression of their target genes, are commonly involved in stimulating and adjusting of many processes that result in cardiovascular diseases, contain cardiac ischemia/reperfusion (I/R) damage. However, the expression and role of miR-149 in pyroptosis mediated myocardial I/R damage remains unclear. MATERIAL AND METHODS Real-time polymerase chain reaction was performed to measure the miR-149 and FoxO3 expression in I/R stimulated H9C2 cells. The cell proliferation, pyroptosis-related inflammatory genes in I/R-treated H9C2 cells transfected miR-149 mimics or miR-149 inhibitor were both explored. We predicted and confirmed miR-149 targets by using bioinformatics analyses and luciferase reporter assay. In addition, the potential relationship between miR-149 and FoxO3 in pyroptosis from I/R treated H9C2 cells was analyzed. RESULTS Our results showed that miR-149 was upregulated, while FoxO3 was downregulated in I/R stimulated H9C2 cells. Over-expression of miR-149 inhibited cell viability and promote pyroptosis, however, down-expression of miR-149 had an opposite effect in I/R treated H9C2 cells. Furthermore, miR-149 could negatively regulate FoxO3 expression by binding 3'UTR, whereas silencing of FoxO3 attenuated the effect of miR-149-mimics on cell proliferation and pyroptosis in I/R treated H9C2 cells. CONCLUSIONS Our study found that miR-149 played a critical role in pyroptosis during cardiac I/R injury, and thus, might provide a novel therapeutic target.


Subject(s)
Forkhead Box Protein O3/genetics , MicroRNAs/genetics , Pyroptosis/genetics , Animals , Cell Line , Cell Survival , Forkhead Box Protein O3/metabolism , Ischemia/metabolism , Mice , Myocardial Ischemia/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Pyroptosis/physiology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Signal Transduction
12.
Article in English | MEDLINE | ID: mdl-31765322

ABSTRACT

Auscultation of the heart is a widely studied technique, which requires precise hearing from practitioners as a means of distinguishing subtle differences in heart-beat rhythm. This technique is popular due to its non-invasive nature, and can be an early diagnosis aid for a range of cardiac conditions. Machine listening approaches can support this process, monitoring continuously and allowing for a representation of both mild and chronic heart conditions. Despite this potential, relevant databases and benchmark studies are scarce. In this paper, we introduce our publicly accessible database, the Heart Sounds Shenzhen Corpus (HSS), which was first released during the recent INTERSPEECH 2018 ComParE Heart Sound sub-challenge. Additionally, we provide a survey of machine learning work in the area of heart sound recognition, as well as a benchmark for HSS utilising standard acoustic features and machine learning models. At best our support vector machine with Log Mel features achieves 49.7% unweighted average recall on a three category task (normal, mild, moderate/severe).

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4776-4779, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441416

ABSTRACT

Given the world-wide prevalence of heart disease, the robust and automatic detection of abnormal heart sounds could have profound effects on patient care and outcomes. In this regard, a comparison of conventional and state-of-theart deep learning based computer audition paradigms for the audio classification task of normal, mild abnormalities, and moderate/severe abnormalities as present in phonocardiogram recordings, is presented herein. In particular, we explore the suitability of deep feature representations as learnt by sequence to sequence autoencoders based on the auDeep toolkit. Key results, gained on the new Heart Sounds Shenzhen corpus, indicate that a fused combination of deep unsupervised features is well suited to the three-way classification problem, achieving our highest unweighted average recall of 47.9% on the test partition.


Subject(s)
Heart Sounds , Deep Learning , Humans
14.
FASEB J ; : fj201701408R, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29863913

ABSTRACT

Regulatory T (Treg) cells offer new therapeutic options for controlling undesired systemic and local immune responses. The aim of the current study was to determine the impact of therapeutic Treg administration on systemic and cardiac inflammation and remodeling in coxsackievirus B3 (CVB3) -induced myocarditis. Therefore, syngeneic Treg cells were applied intravenously in CVB3-infected mice 3 d after infection. Compared with CVB3 + PBS mice, CVB3 + Treg mice exhibited lower left ventricular (LV) chemokine expression, accompanied by reduced cardiac presence of proinflammatory Ly6ChighCCR2highCx3Cr1low monocytes and higher retention of proinflammatory Ly6CmidCCR2highCx3Cr1low monocytes in the spleen. In addition, splenic myelopoiesis was reduced in CVB3 + Treg compared with CVB3 + PBS mice. Coculture of Treg cells with splenocytes isolated from mice 3 d post-CVB3 infection further demonstrated the ability of Treg cells to modulate monocyte differentiation in favor of the anti-inflammatory Ly6ClowCCR2lowCx3Cr1high subset. Treg-mediated immunomodulation was paralleled by lower collagen 1 protein expression and decreased levels of soluble and insoluble collagen in LV of CVB3 + Treg compared with CVB3 + PBS mice. In agreement with these findings, LV systolic and diastolic function was improved in CVB3 + Treg mice compared with CVB3 + PBS mice. In summary, adoptive Treg transfer in the inflammatory phase of viral-induced myocarditis protects the heart against inflammatory damage and fibrosis via modulation of monocyte subsets.-Pappritz, K., Savvatis, K., Miteva, K., Kerim, B., Dong, F., Fechner, H., Müller, I., Brandt, C., Lopez, B., González, A., Ravassa, S., Klingel, K., Diez, J., Reinke, P., Volk, H.-D., Van Linthout, S., Tschöpe, C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis.

15.
Sci Rep ; 8(1): 2820, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434214

ABSTRACT

Inflammation in myocarditis induces cardiac injury and triggers disease progression to heart failure. NLRP3 inflammasome activation is a newly identified amplifying step in the pathogenesis of myocarditis. We previously have demonstrated that mesenchymal stromal cells (MSC) are cardioprotective in Coxsackievirus B3 (CVB3)-induced myocarditis. In this study, MSC markedly inhibited left ventricular (LV) NOD2, NLRP3, ASC, caspase-1, IL-1ß, and IL-18 mRNA expression in CVB3-infected mice. ASC protein expression, essential for NLRP3 inflammasome assembly, increased upon CVB3 infection and was abrogated in MSC-treated mice. Concomitantly, CVB3 infection in vitro induced NOD2 expression, NLRP3 inflammasome activation and IL-1ß secretion in HL-1 cells, which was abolished after MSC supplementation. The inhibitory effect of MSC on NLRP3 inflammasome activity in HL-1 cells was partly mediated via secretion of the anti-oxidative protein stanniocalcin-1. Furthermore, MSC application in CVB3-infected mice reduced the percentage of NOD2-, ASC-, p10- and/or IL-1ß-positive splenic macrophages, natural killer cells, and dendritic cells. The suppressive effect of MSC on inflammasome activation was associated with normalized expression of prominent regulators of myocardial contractility and fibrosis to levels comparable to control mice. In conclusion, MSC treatment in myocarditis could be a promising strategy limiting the adverse consequences of cardiac and systemic NLRP3 inflammasome activation.


Subject(s)
Inflammasomes/metabolism , Mesenchymal Stem Cells/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cardiomyopathies/metabolism , Caspase 1/metabolism , Coxsackievirus Infections/virology , Heart/physiology , Humans , Inflammation/pathology , Interleukin-1beta/metabolism , Macrophages/metabolism , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Myocarditis/virology , Myocardium/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/physiology
16.
Braz J Med Biol Res ; 51(3): e7050, 2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29340528

ABSTRACT

A new microporous lanthanide metal-organic framework, {[Yb(BTB)(H2O) (DEF)2}n (1, DEF=N,N-Diethylformamide), with 1D nano-sized channels has been constructed by bridging helical chain secondary building units with 1,3,5-benzenetrisbenzoic acid (H3BTB) ligand. Structural characterization suggests that this complex crystallizes in the hexagonal space group P6122 and possesses 1D triangular channels with coordinated water molecules pointing to the channel center. In addition, anti-myocarditis properties of compound 1 were evaluated in vivo. The results showed that compound 1 can improve hemodynamic parameters of, and it may be a good therapeutic option for heart failure in the future.


Subject(s)
Anti-Inflammatory Agents/chemistry , Crystallography, X-Ray , Lanthanoid Series Elements/chemistry , Metal-Organic Frameworks/chemistry , Myocarditis/therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Male , Metal-Organic Frameworks/therapeutic use , Mice , Models, Molecular , Powder Diffraction , Thermogravimetry , X-Ray Diffraction
17.
Braz. j. med. biol. res ; 51(3): e7050, 2018. tab, graf
Article in English | LILACS | ID: biblio-889043

ABSTRACT

A new microporous lanthanide metal-organic framework, {[Yb(BTB)(H2O) (DEF)2}n (1, DEF=N,N-Diethylformamide), with 1D nano-sized channels has been constructed by bridging helical chain secondary building units with 1,3,5-benzenetrisbenzoic acid (H3BTB) ligand. Structural characterization suggests that this complex crystallizes in the hexagonal space group P6122 and possesses 1D triangular channels with coordinated water molecules pointing to the channel center. In addition, anti-myocarditis properties of compound 1 were evaluated in vivo. The results showed that compound 1 can improve hemodynamic parameters of, and it may be a good therapeutic option for heart failure in the future.


Subject(s)
Animals , Male , Mice , Anti-Inflammatory Agents/chemistry , Crystallography, X-Ray , Lanthanoid Series Elements/chemistry , Metal-Organic Frameworks/chemistry , Myocarditis/therapy , Anti-Inflammatory Agents/therapeutic use , Metal-Organic Frameworks/therapeutic use , Models, Molecular , Powder Diffraction , Thermogravimetry , X-Ray Diffraction
18.
PLoS One ; 12(8): e0182643, 2017.
Article in English | MEDLINE | ID: mdl-28800592

ABSTRACT

Studies on inflammatory disorders elucidated the pivotal role of the CX3CL1/CX3CR1 axis with respect to the pathophysiology and diseases progression. Coxsackievirus B3 (CVB3)-induced myocarditis is associated with severe cardiac inflammation, which may progress to heart failure. We therefore investigated the influence of CX3CR1 ablation in the model of acute myocarditis, which was induced by inoculation with 5x105 plaque forming units of CVB3 (Nancy strain) in either CX3CR1-/- or C57BL6/j (WT) mice. Seven days after infection, myocardial inflammation, remodeling, and titin expression and phosphorylation were examined by immunohistochemistry, real-time PCR and Pro-Q diamond stain. Cardiac function was assessed by tip catheter. Compared to WT CVB3 mice, CX3CR1-/- CVB3 mice exhibited enhanced left ventricular expression of inflammatory cytokines and chemokines, which was associated with an increase of immune cell infiltration/presence. This shift towards a pro-inflammatory immune response further resulted in increased cardiac fibrosis and cardiomyocyte apoptosis, which was reflected by an impaired cardiac function in CX3CR1-/- CVB3 compared to WT CVB3 mice. These findings demonstrate a cardioprotective role of CX3CR1 in CVB3-infected mice and indicate the relevance of the CX3CL1/CX3CR1 system in CVB3-induced myocarditis.


Subject(s)
Chemokine CX3CL1/immunology , Coxsackievirus Infections/genetics , Enterovirus B, Human/pathogenicity , Host-Pathogen Interactions/immunology , Myocarditis/genetics , Receptors, Chemokine/immunology , Animals , Apoptosis , CX3C Chemokine Receptor 1 , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/immunology , Chemokine CX3CL1/genetics , Coxsackievirus Infections/immunology , Coxsackievirus Infections/pathology , Coxsackievirus Infections/virology , Disease Models, Animal , Enterovirus B, Human/growth & development , Gene Expression Regulation , Heart Function Tests , Humans , Interleukins/genetics , Interleukins/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocarditis/immunology , Myocarditis/pathology , Myocarditis/virology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Phosphorylation , Protein Kinases/genetics , Protein Kinases/immunology , Receptors, Chemokine/deficiency , Receptors, Chemokine/genetics
19.
Stem Cells Transl Med ; 6(4): 1249-1261, 2017 04.
Article in English | MEDLINE | ID: mdl-28186704

ABSTRACT

Mesenchymal stromal cell (MSC) application in Coxsackievirus B3 (CVB3)-induced myocarditis reduces myocardial inflammation and fibrosis, exerts prominent extra-cardiac immunomodulation, and improves heart function. Although the abovementioned findings demonstrate the benefit of MSC application, the mechanism of the MSC immunomodulatory effects leading to a final cardioprotective outcome in viral myocarditis remains poorly understood. Monocytes are known to be a trigger of myocardial tissue inflammation. The present study aims at investigating the direct effect of MSC on the mobilization and trafficking of monocytes to the heart in CVB3-induced myocarditis. One day post CVB3 infection, C57BL/6 mice were intravenously injected with 1 x 106 MSC and sacrificed 6 days later for molecular biology and flow cytometry analysis. MSC application reduced the severity of myocarditis, and heart and blood pro-inflammatory Ly6Chigh and Ly6Cmiddle monocytes, while those were retained in the spleen. Anti-inflammatory Ly6Clow monocytes increased in the blood, heart, and spleen of MSC-treated CVB3 mice. CVB3 infection induced splenic myelopoiesis, while MSC application slightly diminished the spleen myelopoietic activity in CVB3 mice. Left ventricular (LV) mRNA expression of the chemokines monocyte chemotactic protein-1 (MCP)-1, MCP-3, CCL5, the adhesion molecules intercellular adhesion molecule-1, vascular cell adhesion molecule-1, the pro-inflammatory cytokines interleukin-6, interleukin-12, tumor necrosis factor-α, the pro-fibrotic transforming growth factorß1, and circulating MCP-1 and MCP-3 levels decreased in CVB3 MSC mice, while LV stromal cell-derived factor-1α RNA expression and systemic levels of fractalkine were increased in CVB3 MSC mice. MSC application in CVB3-induced myocarditis modulates monocytes trafficking to the heart and could be a promising strategy for the resolution of cardiac inflammation and prevention of the disease progression. Stem Cells Translational Medicine 2017;6:1249-1261.


Subject(s)
Coxsackievirus Infections/complications , Mesenchymal Stem Cells/physiology , Myocarditis/etiology , Myocarditis/therapy , Myocardium/cytology , Animals , Cells, Cultured , Chemokine CCL2/metabolism , Chemokine CCL7/metabolism , Humans , Interleukin-12/metabolism , Interleukin-6/metabolism , Male , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Monocytes/cytology , Tumor Necrosis Factor-alpha/metabolism
20.
Bioorg Med Chem Lett ; 26(16): 3876-80, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27432761

ABSTRACT

Rising worldwide cancer incidence and resistance to current anti-cancer drugs necessitate the need for new pharmaceutical compounds and drug delivery system. Two novel series of biscoumarin (1-4) and dihydropyran (5-16) derivatives were synthesized via a one-pot multicomponent condensation reaction and evaluated for their antitumor activity in vitro. The X-ray crystal structure analysis of four representative compounds 2, 7, 10 and 13 confirmed the structures of these compounds. Compounds 1-4 showed the most potent antitumor activity among the total 16 derivatives. More interestingly, preliminary mechanism studies revealed that the most potent compound 4 induced apoptosis and arrested the cell cycle at the S phase in HUTU80 cells. Additionally, the increased accumulation of HUTU80 cells in the sub G1 peak further pointed to the occurence of the cell apoptosis. The selectivity index analysis demonstrated that all the biscoumarin compounds (SI=3.1-7.5) possess higher selectivity towards intestinal epithelial adenocarcinoma cell line (HuTu80) than positive control drug carboplatin (SI=1.6-1.8). The biscoumarin compounds also showed no obvious acute toxicity on mice.


Subject(s)
Antineoplastic Agents/chemistry , Coumarins/chemistry , Pyrans/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Coumarins/chemical synthesis , Coumarins/toxicity , Crystallography, X-Ray , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Molecular Conformation , Pyrans/chemical synthesis , Pyrans/toxicity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...