Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 26(14): 3982-3991, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29937355

ABSTRACT

The abnormal activation of PI3K signaling pathway leads to the occurrence of various cancers. The PI3Kα is frequently mutated and overexpressed in many human cancers. Therefore, the PI3Kα was considered as a promising target in therapeutic treatment of cancer. In this study, two series of compounds containing 2H-benzo[b][1,4]oxazin-3(4H)-one and 2H-benzo[b][1,4]oxazine scaffold were synthesized and evaluated antiproliferative activities against three cancer cell lines, including HCT-116, MDA-MB-231 and SNU638. Compound 7f with the most potent antiproliferative activity was selected for further evaluation on normal cells and PI3K kinase. Studies indicated that compound 7f could decrease the phospho-Akt (T308) in a dose-dependent manner. Four key hydrogen bonding interactions were found in the docking of 7f with PI3K enzyme. All the results suggested that 7f was a potent PI3Kα inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Drug Design , Oxazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Class I Phosphatidylinositol 3-Kinases/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Oxazines/chemical synthesis , Oxazines/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...