Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 329: 117089, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36565499

ABSTRACT

Efficient electrode materials are essential to convert salinity gradient energy into oxidative degradation energy and electrical energy by reverse electrodialysis reactor (REDR). In this context, comparative experiments of REDR using different anodes (Ti/IrO2-RuO2, Ti/PbO2 and Ti/Ti4O7) were conducted. The effects of output current and electrode rinse solution (ERS) flowrate on mineralization efficiency and energy output were discussed. Results demonstrated that the COD removal rate(ηCOD) rose almost linearly with output current and ERS flowrate when using Ti/Ti4O7 anode, but excessive operating conditions caused a slow increase or even decrease of ηCOD when using Ti/IrO2-RuO2 or Ti/PbO2 anodes. The order of electrode system potential loss (Eele) for the three anodes was Ti/Ti4O7> Ti/PbO2> Ti/IrO2-RuO2. High Eele was beneficial to ηCOD but had a negative effect on the net output power (Pnet) of REDR. Regardless of the applied anodes, increasing the current and decreasing the ERS flowrate was detrimental to Pnet due to higher Eele. Based on these findings, four energy efficiency parameters were defined to evaluate energy recovery from multiple perspectives by linking energy output with mineralization capacity. They were electrode efficiency (ηele), energy efficiency (EE), general current efficiency (GCE) and energy consumption (EC), respectively. Results showed that REDR with Ti/Ti4O7 anodes and suitable operating conditions achieved the optimal energy indicators and mineralization efficiency, which provided an efficient and economical option for wastewater treatment and energy recovery.


Subject(s)
Water Pollutants, Chemical , Water Purification , Phenol , Phenols , Oxidation-Reduction , Electrodes , Titanium
2.
Environ Res ; 214(Pt 4): 114064, 2022 11.
Article in English | MEDLINE | ID: mdl-35977587

ABSTRACT

In this paper, the synthetic methyl orange (MO) dyeing wastewater treated by a reverse electrodialysis reactor (REDR) with 40 member pairs was investigated first. The boron-doped diamond (BDD) and carbon felt were adopted as an anode and a cathode in the REDR. The influences of operation parameters on the chemical oxygen demand (COD) removal efficiency were detected and explored. Then, a mathematical model of organic mineralizing was developed for the REDR to predict the variation of COD removal efficiency with treating time under the different operation conditions. Finally, the energy consumption of the wastewater treated by the REDR was analyzed. The results showed that raising the working fluid flowing velocity and electrode rinse solution flowrate improved the COD removal efficiency and instantaneous current efficiency (ICE), and reduced the total energy consumption (TEC) of the REDR. Raising the initial MO concentration could significantly reduce the TEC despite the COD removal efficiency being near. Since the main energy consumed by the REDR was salinity gradient energy (SGE) from waste heat conversion or the natural environment, the energy cost of REDR treating wastewater has been reduced significantly.


Subject(s)
Wastewater , Water Pollutants, Chemical , Azo Compounds , Biological Oxygen Demand Analysis , Coloring Agents , Oxidation-Reduction , Waste Disposal, Fluid/methods , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...