Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 36(3): 746-763, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38041863

ABSTRACT

N 6-methyladenosine (m6A) is a common epitranscriptional mRNA modification in eukaryotes. Thirteen putative m6A readers, mostly annotated as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins, have been identified in Arabidopsis (Arabidopsis thaliana), but few have been characterized. Here, we show that the Arabidopsis m6A reader ECT1 modulates salicylic acid (SA)-mediated plant stress responses. ECT1 undergoes liquid-liquid phase separation in vitro, and its N-terminal prion-like domain is critical for forming in vivo cytosolic biomolecular condensates in response to SA or bacterial pathogens. Fluorescence-activated particle sorting coupled with quantitative PCR analyses unveiled that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses. Consistent with this finding, ECT1 overexpression promotes bacterial multiplication in plants. Collectively, our findings unequivocally link ECT1-associated cytosolic condensates to SA-dependent plant stress responses, advancing the current understanding of m6A readers and the SA signaling network.


Subject(s)
Adenine/analogs & derivatives , Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Salicylic Acid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
2.
Angew Chem Int Ed Engl ; 62(20): e202300906, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36929048

ABSTRACT

The development of mild, efficient, and enantioselective methods for preparing chiral building blocks from simple, renewable carbon units has been a long-term goal of the sustainable chemical industry. Mandelate derivatives are valuable pharmaceutical intermediates and chiral resolving agents, but their manufacture relies heavily on highly toxic cyanide. Herein, we report (S)-4-hydroxymandelate synthase (HmaS)-centered biocatalytic cascades for the synthesis of mandelates from benzaldehydes and glycine. We show that HmaS can be engineered to perform R-selective hydroxylation by single-point mutation, empowering the stereodivergent synthesis of both (S)- and (R)-mandelate derivatives. These biocatalytic cascades enabled the production of various mandelate derivatives with high atom economy as well as excellent yields (up to 98 %) and ee values (up to >99 %). This methodology offers an effective cyanide-free technology for greener and sustainable production of mandelate derivatives.


Subject(s)
Aldehydes , Mandelic Acids , Biocatalysis , Hydroxylation , Benzaldehydes , Stereoisomerism
3.
Genome Biol ; 23(1): 244, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36419179

ABSTRACT

Heat-imposed crop failure is often attributed to reduced thermotolerance of floral tissues; however, the underlying mechanism remains unknown. Here, we demonstrate that m6A RNA methylation increases in Arabidopsis flowers and negatively regulates gene expression variability. Stochastic gene expression provides flexibility to cope with environmental stresses. We find that reduced transcriptional fluctuation is associated with compromised activation of heat-responsive genes. Moreover, disruption of an RNA demethylase AtALKBH10B leads to lower gene expression variability, suppression of heat-activated genes, and strong reduction of plant fertility. Our work proposes a novel role for RNA methylation in the bet-hedging strategy of heat stress response.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thermotolerance , Arabidopsis/metabolism , Thermotolerance/genetics , Arabidopsis Proteins/metabolism , Methylation , Gene Expression Regulation, Plant , RNA/metabolism , Gene Expression
4.
Plant Cell ; 32(7): 2237-2250, 2020 07.
Article in English | MEDLINE | ID: mdl-32409317

ABSTRACT

The plant stress hormone salicylic acid (SA) participates in local and systemic acquired resistance, which eventually leads to whole-plant resistance to bacterial pathogens. However, if SA-mediated signaling is not appropriately controlled, plants incur defense-associated fitness costs such as growth inhibition and cell death. Despite its importance, to date only a few components counteracting the SA-primed stress responses have been identified in Arabidopsis (Arabidopsis thaliana). These include other plant hormones such as jasmonic acid and abscisic acid, and proteins such as LESION SIMULATING DISEASE1, a transcription coregulator. Here, we describe PLANT NATRIURETIC PEPTIDE A (PNP-A), a functional analog to vertebrate atrial natriuretic peptides, that appears to antagonize the SA-mediated plant stress responses. While loss of PNP-A potentiates SA-mediated signaling, exogenous application of synthetic PNP-A or overexpression of PNP-A significantly compromises the SA-primed immune responses. Moreover, we identify a plasma membrane-localized receptor-like protein, PNP-R2, that interacts with PNP-A and is required to initiate the PNP-A-mediated intracellular signaling. In summary, our work identifies a peptide and its putative cognate receptor as counteracting both SA-mediated signaling and SA-primed cell death in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Salicylic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Cell Death/drug effects , Cell Membrane/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Cells/metabolism , Plants, Genetically Modified , Salicylic Acid/pharmacology , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...