Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 901: 148169, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38242381

ABSTRACT

BACKGROUND: Pneumoconiosis is a kind of lung dysfunction caused by the inhalation of mineral dust. However, the potential molecular mechanism of pneumoconiosis have not been fully elucidated. METHODS: In this study, the silica-treated pneumoconiosis mice model was constructed and the transcriptome sequencing data including lncRNA, circRNA, and mRNA were obtained. Firstly, differentially expressed lncRNA, circRNA, and mRNA (DElncRNA, DEcircRNA, DEGs) between control and pneumoconiosis/silicosis samples were screened, the target miRNAs (co-pre-miRNAs) were obtained by intersecting the miRNAs predicted by DElncRNA and DEcircRNA, respectively, and the target mRNAs (co-mRNA) were obtained by intersecting the mRNAs predicted by target miRNA and DEGs. Then, the lncRNA/circRNA-miRNA-mRNA networks were constructed by Cytoscape. Next, the key mRNAs were obtained by protein-protein interaction (PPI) analysis, and the key lncRNAs/circRNAs were selected by correlation analysis. Moreover, the expression of the key lncRNAs, circRNAs and mRNAs on chromosome were studied by the "circlize" package. Furthermore, the TFs-miRNA-mRNA network was constructed and the function of DEGs were explored by Ingenuity Pathway Analysis (IPA). To demonstrate the feasibility and value of the constructed ceRNA networks, we validated key genes and mmu-miR-682 pathway. Finally, We used the Drug-Gene Interaction database to predict potential drugs that could interfere with key genes,which may help to find promising treatment. RESULTS: There were 427 DElncRNAs, 107 DEcircRNAs and 1,597 DEGs between silicosis and control groups. Totals of 77 co-pre-miRNAs and 96 co-mRNA were screened, and the lncRNA/circRNA-miRNA-mRNA networks were constructed with 27 lncRNA/25 circRNAs, 74 miRNAs and 96 mRNAs. Then, 6 key mRNAs including Igf1, Klf4, Ptgs2, Epas1, Gnao1, and Il1a were obtained by PPI, and all of these key mRNAs and 10 key lncRNAs and 8 circRNAs were significantly different between the pneumoconiosis and normal groups, in which 10 lncRNAs and 9 circRNA that have not been previously studied in pneumoconiosis/silicosis can be used as new potential therapeutic targets. Moreover, the TFs-miRNA-mRNA network were constructed with 11 TFs, 1 key miRNA (mmu-miR-682) and 3 key mRNAs (Igf1, Epas1, Ptgs2). And the validation of key genes revealing by RNA-seq through experimental approaches shows the the predictive power of this study. Finally, IPA results indicated that 41 pathways were activated and 2 pathways were suppressed in pneumoconiosis/silicosis groups, and Pathogen Induced Cytokine Storm Signaling Pathway was the most significant pathway affected by pneumoconiosis/silicosis. In addition, 93 drugs were screened out by Drug-Gene Interaction database. Among them, Hydroxychloroquine was a kind of drug which associated with Il1a and Ptgs2, may be a promising treatment. CONCLUSION: This study constructed the lncRNA/circRNA-miRNA-mRNA and TFs-miRNA-mRNA networks, which could deepen the potential molecular regulatory mechanism of pneumoconiosis/silicosis.


Subject(s)
MicroRNAs , Pneumoconiosis , RNA, Long Noncoding , Silicosis , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Circular/genetics , Cyclooxygenase 2 , Exome Sequencing , MicroRNAs/genetics , RNA, Messenger/genetics , Gene Regulatory Networks
2.
Clin Respir J ; 17(7): 684-693, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380332

ABSTRACT

PURPOSE: The purpose of this study is to propose an efficient coal workers' pneumoconiosis (CWP) clinical prediction system and put it into clinical use for clinical diagnosis of pneumoconiosis. METHODS: Patients with CWP and dust-exposed workers who were enrolled from August 2021 to December 2021 were included in this study. Firstly, we chose the embedded method through using three feature selection approaches to perform the prediction analysis. Then, we performed the machine learning algorithms as the model backbone and combined them with three feature selection methods, respectively, to determine the optimal predictive model for CWP. RESULTS: Through applying three feature selection approaches based on machine learning algorithms, it was found that AaDO2 and some pulmonary function indicators played an important role in prediction for identifying CWP of early stage. The support vector machine (SVM) algorithm was proved as the optimal machine learning model for predicting CWP, with the ROC curves obtained from three feature selection methods using SVM algorithm whose AUC values of 97.78%, 93.7%, and 95.56%, respectively. CONCLUSION: We developed the optimal model (SVM algorithm) through comparisons and analyses among the performances of different models for the prediction of CWP as a clinical application.


Subject(s)
Anthracosis , Coal Mining , Pneumoconiosis , Humans , Dust/analysis , Coal
3.
BMC Pulm Med ; 22(1): 271, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35840945

ABSTRACT

PURPOSE: This paper aims to develop a successful deep learning model with data augmentation technique to discover the clinical uniqueness of chest X-ray imaging features of coal workers' pneumoconiosis (CWP). PATIENTS AND METHODS: We enrolled 149 CWP patients and 68 dust-exposure workers for a prospective cohort observational study between August 2021 and December 2021 at First Hospital of Shanxi Medical University. Two hundred seventeen chest X-ray images were collected for this study, obtaining reliable diagnostic results through the radiologists' team, and confirming clinical imaging features. We segmented regions of interest with diagnosis reports, then classified them into three categories. To identify these clinical features, we developed a deep learning model (ShuffleNet V2-ECA Net) with data augmentation through performances of different deep learning models by assessment with Receiver Operation Characteristics (ROC) curve and area under the curve (AUC), accuracy (ACC), and Loss curves. RESULTS: We selected the ShuffleNet V2-ECA Net as the optimal model. The average AUC of this model was 0.98, and all classifications of clinical imaging features had an AUC above 0.95. CONCLUSION: We performed a study on a small dataset to classify the chest X-ray clinical imaging features of pneumoconiosis using a deep learning technique. A deep learning model of ShuffleNet V2 and ECA-Net was successfully constructed using data augmentation, which achieved an average accuracy of 98%. This method uncovered the uniqueness of the chest X-ray imaging features of CWP, thus supplying additional reference material for clinical application.


Subject(s)
Anthracosis , Coal Mining , Deep Learning , Pneumoconiosis , Anthracosis/diagnostic imaging , Coal , Humans , Pneumoconiosis/diagnostic imaging , Prospective Studies , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...