Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1362905, 2024.
Article in English | MEDLINE | ID: mdl-38855460

ABSTRACT

In the North China Plain, farmers are using excessive amounts of fertilizer for the production of high-yield crop yield, which indirectly causes pollution in agricultural production. To investigate an optimal rate of fertilizer application for summer maize, the fertilizer reduction experiments with 600 kg/ha NPK (N: P2O5: K2O = 28: 8: 10) as normal fertilizer application (NFA), (i.e., 100F), were conducted successively during 2020 and 2021 to study the effects of reduced fertilizer rates, including 90% (540 kg/ha; i.e., 90F), 80% (480 kg/ha; i.e., 80F), 62.5% (375 kg/ha; i.e., 62.5F) and 50% (300 kg/ha; i.e., 50F) of NFA, on the plant growth of maize, the dynamics of key population abundances and community diversity of insects, and the composition and diversity of microbial community and finally to find out the N-metabolic enzymes' activity in soil. Our findings revealed that the fertilizer reduction rates by 10% - 20% compared to the current 100% NFA, and it has not significantly affected the plant growth of maize, not only plant growth indexes but also foliar contents of nutrients, secondary metabolites, and N-metabolic enzymes' activity. Further, there was no significant alteration of the key population dynamics of the Asian corn borer (Ostrinia furnacalis) and the community diversity of insects on maize plants. It is interesting to note that the level of N-metabolic enzymes' activity and microbial community diversity in soil were also not affected. While the fertilizer reduction rate by 50% unequivocally reduced field corn yield compared to 100% NFA, significantly decreased the yield by 17.10%. The optimal fertilizer application was calculated as 547 kg/ha (i.e., 91.17% NFA) based on the simulation analysis of maize yields among the five fertilizer application treatments, and the fertilizer application reduced down to 486 kg/ha (i.e., 81.00% NFA) with a significant reduction of maize yield. These results indicated that reduced the fertilizer application by 8.83% - 19.00% is safe and feasible to mitigate pollution and promote sustainable production of maize crops in the region.

2.
Insects ; 14(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37999091

ABSTRACT

Ants are one of the largest insect groups, with the most species and individuals in the world, and they have an important ecological function. Ants are not only an important part of the food chains but are also one of the main decomposers on the Earth; they can also improve soil fertility, etc. However, some species of ants are harmful to human beings, which leads to people's panic or worry about coming into contact with these insects during their daily home life or in their tourism or leisure activities. The presence of ants in indoor living facilities and in outdoor green spaces, parks, gardens, and tourist attractions seriously interferes with the leisure life and entertainment activities of all people (especially children). How can we control ants in these environments? Do we kill them by spraying insecticides, or do we adopt green prevention and control technology for the ecological management of ants? This topic is related to healthy life for the public and the protection of the ecological environment. In this paper, the species and diversity of ants are introduced, and research progress regarding ant tropism is introduced according to the three aspects of phototaxis, chromotaxis, and chemotaxis (i.e., "3-tropisms"). The research on repellent substances from plants and insects and the related ant attractants are also summarized, analyzed, and discussed, in order to help the research and application of green prevention and control technology for ant diversity protection and conservation.

SELECTION OF CITATIONS
SEARCH DETAIL
...