Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Int J Biol Macromol ; : 133890, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019371

ABSTRACT

Based on the goal of "carbon neutralization and carbon peaking", it is still challenging to develop a high adsorption performance and environmentally friendly material for uranium extraction. We proposed a new idea of "Three-Dimensional Environmental-Friendly". A series of amino acid bis-substituted chitosan aerogels (C-1, C-2, C-3, C-4 and C-5) were prepared by ice template method and selective substitution reaction in water environment. Among them, C-3 adsorbent has the antibacterial properties of gram-positive bacteria, gram-negative bacteria and marine bacteria, which is more suitable for uranium adsorption in complex environments. Also, C-3 adsorbent solves the shortcomings of poor adsorption property and easy to cause secondary pollution during modification of traditional chitosan materials. The selectivity and adsorption capacity of uranium are further improved by the unique functional groups of serine residues. At pH = 7, the maximum adsorption capacity reaches 606.32 mg/g. In addition, C-3 adsorbent have excellent selectivity and stability. The synergistic effect of coordination, electrostatic interaction and intraparticle diffusion between C-3 adsorbent and uranium may be the key to its high adsorption performance. The high performance of chitosan adsorbent provides a new idea for the design and application of green and efficient uranium adsorption materials.

2.
Nanoscale Adv ; 6(12): 3220-3228, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38868834

ABSTRACT

Due to the unique and excellent optical performance and promising prospect for various photonics applications, cavity-enhanced superfluorescence (CESF) in perovskite quantum dot assembled superstructures has garnered wide attention. However, the stringent requirements and high threshold for achieving CESF limit its further development and application. The high threshold of CESF in quantum dot superstructures is mainly attributed to the low radiation recombination rate of the quantum dot and the unsatisfactory light field limiting the ability of the assembled superstructures originating from low controllability of self-assembly. Herein, we propose a strategy to reduce the threshold of CESF in quantum dot superstructure microcavities from two aspects: facet engineering optimization of quantum dot blocks and controllability improvement of the assembly method. We introduce dodecahedral quantum dots with lower nonradiative recombination, substituting frequently used cubic quantum dots as assembly blocks. Besides, we adopt the micro-emulsion droplet assembly method to obtain spherical perovskite quantum dot superparticles with high packing factors and orderly internal arrangements, which are more controllable and efficient than the conventional solvent-drying methods. Based on the dodecahedral quantum dot superparticles, we realized low-threshold CESF (Pth = 15.6 µJ cm-2). Our work provides a practical and scalable avenue for realizing low threshold CESF in quantum dot assembled superstructure systems.

3.
Nanomaterials (Basel) ; 14(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38607148

ABSTRACT

Micro/nano photonic barcoding has emerged as a promising technology for information security and anti-counterfeiting applications owing to its high security and robust tamper resistance. However, the practical application of conventional micro/nano photonic barcodes is constrained by limitations in encoding capacity and identification verification (e.g., broad emission bandwidth and the expense of pulsed lasers). Herein, we propose high-capacity photonic barcode labels by leveraging continuous-wave (CW) pumped monolayer tungsten disulfide (WS2) lasing. Large-area, high-quality monolayer WS2 films were grown via a vapor deposition method and coupled with external cavities to construct optically pumped microlasers, thus achieving an excellent CW-pumped lasing with a narrow linewidth (~0.39 nm) and a low threshold (~400 W cm-2) at room temperature. Each pixel within the photonic barcode labels consists of closely packed WS2 microlasers of varying sizes, demonstrating high-density and nonuniform multiple-mode lasing signals that facilitate barcode encoding. Notably, CW operation and narrow-linewidth lasing emission could significantly simplify detection. As proof of concept, a 20-pixel label exhibits a high encoding capacity (2.35 × 10108). This work may promote the advancement of two-dimensional materials micro/nanolasers and offer a promising platform for information encoding and security applications.

4.
Environ Sci Pollut Res Int ; 31(11): 16554-16570, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38319420

ABSTRACT

The directed construction of productive adsorbents is essential to avoid damaging human health from the harmful radioactive and toxic U(VI)-containing wastewater. Herein, a sort of Zr-based metal organic framework (MOF) called PCN-222 was synthesized and oxime functionalized based on directed molecular structure design to synthesize an efficient adsorbent with antimicrobial activity, named PCN-222-OM, for recovering U(VI) from wastewater. PCN-222-OM unfolded splendid adsorption capacity (403.4 mg·g-1) at pH = 6.0 because of abundant holey structure and mighty chelation for oxime groups with U(VI) ions. PCN-222-OM also exhibited outstanding selectivity and reusability during the adsorption. The XPS spectra authenticated the -NH and oxime groups which revealed a momentous function. Concurrently, PCN-222-OM also possessed good antimicrobial activity, antibiofouling activity, and environmental safety; adequately decreased detrimental repercussions about bacteria and Halamphora on adsorption capacity; and met non-toxic and non-hazardous requirements for the application. The splendid antimicrobial activity and antibiofouling activity perhaps arose from the Zr6(µ3-O)4(µ3-OH)4(H2O)4(OH)4 clusters and rich functional groups within PCN-222-OM. Originally proposed PCN-222-OM was one potentially propitious material to recover U(VI) in wastewater on account of outstanding adsorption capacity, antimicrobial activity, antibiofouling activity, and environmental safety, meanwhile providing a newfangled conception on the construction of peculiar efficient adsorbent.


Subject(s)
Anti-Infective Agents , Uranium , Humans , Wastewater , Uranium/analysis , Oximes , Molecular Structure , Adsorption , Kinetics
5.
Int J Biol Macromol ; 261(Pt 2): 129735, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281531

ABSTRACT

Multifunctional wound dressings are promising medical materials for various applications. Among them, dressings with antimicrobial activity, high biosafety, and real-time monitoring have attracted considerable research interest. Herein, a biodegradable hemostatic sponge comprising a chitosan skeleton and polyelectrolyte-surfactant complex (CS-PEC) was developed as a versatile wound dressing for wound pH monitoring and inhibition of bacterial infection. CS-PEC sponge with high porosity exhibited satisfactory fluid absorption capacity and biocompatibility, along with antibacterial properties against E. coli and S. aureus. In vivo experiments in rat liver trauma model revealed that wounds treated with the CS-PEC sponge recorded less blood loss (97.1 mg) and shorter hemostasis time (27.2 s) than those treated with commercial gelatin sponge (309.1 mg and 163.5 s, respectively). Furthermore, PECs based on unconventional luminescent molecules (L-C16-Hyp) were used as pH fluorescent indicators, which endowed the sponge with fluorescence-responsive behavior to wound pH changes in the range of 5.0-8.5. Visual images can be captured using a smartphone and converted to RGB color mode values for on-site assessment of wound status. This study sheds light on the design and application of unconventional luminescent materials in wound dressing and provides a smart and effective solution for wound management.


Subject(s)
Chitosan , Staphylococcus aureus , Rats , Animals , Escherichia coli , Chitosan/chemistry , Wound Healing , Hemostasis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bandages
6.
Light Sci Appl ; 13(1): 34, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291038

ABSTRACT

The superfluorescence effect has received extensive attention due to the many-body physics of quantum correlation in dipole gas and the optical applications of ultrafast bright radiation field based on the cooperative quantum state. Here, we demonstrate not only to observe the superfluorescence effect but also to control the cooperative state of the excitons ensemble by externally applying a regulatory dimension of coupling light fields. A new quasi-particle called cooperative exciton-polariton is revealed in a light-matter hybrid structure of a perovskite quantum dot thin film spin-coated on a Distributed Bragg Reflector. Above the nonlinear threshold, polaritonic condensation occurs at a nonzero momentum state on the lower polariton branch owning to the vital role of the synchronized excitons. The phase transition from superfluorescence to polariton condensation exhibits typical signatures of a decrease of the linewidth, an increase of the macroscopic coherence as well as an accelerated radiation decay rate. These findings are promising for opening new potential applications for super-brightness and unconventional coherent light sources and could enable the exploitation of cooperative effects for quantum optics.

7.
J Hazard Mater ; 465: 133320, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38142653

ABSTRACT

The purpose of this research was to design and synthesize an adsorbent based on polyimide covalent organic frameworks (PICOFs) for uranium-containing wastewater treatment and uranium recovery. A modified solvothermal method was innovatively proposed to synthesize PICOFs with high specific surface area (1998.5 m2 g-1) and regular pore structure. Additionally, a convenient functionalization strategy of PICOFs was designed through polydopamine (PDA) and a well-dispersed polymer (MPC-co-AO) containing multiple functional groups, forming stable composite (PMCA-TPPICOFs) in which the hydrogen bonding and cation-π interactions between PDA and MPC-co-AO played a key role. The obtained PMCA-TPPICOFs as an adsorbent exhibited strong selectivity for uranyl ions (maximum adsorption capacity was 538 mg g-1). In simulated wastewater with low uranium concentrations, the removal rate reached 98.3%, and the concentration of treated simulated wastewater met discharge standards. Moreover, PMCA-TPPICOFs was suitable for fixed-bed column adsorption because of its favorable structure. According to the research about adsorption mechanism, the adsorption primarily relied on electrostatic interaction and complexation. In summary, PMCA-TPPICOFs exhibited good potential for uranium-containing wastewater treatment, expanding the application of PICOFs. And the proposed functionalization strategy and modified solvothermal method may promote research in the fields of material functionalization and COFs synthesis. ENVIRONMENTAL IMPLICATION: Uranium is a raw material for nuclear energy applications, which is toxic and radioactive. If uranium is discharged with wastewater, it would not only pose a threat to the environmental protection and life safety, but also cause the loss of precious nuclear raw materials. Although adsorption was considered to be an effective way to remove uranium, many of the developed adsorbents were difficult to apply due to the harsh wastewater environment and complex preparation processes. This study reported a novel adsorbent and a new functionalization strategy, which was expected to solve the problem of uranium recovery in wastewater.

8.
iScience ; 26(11): 108173, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37927555

ABSTRACT

Benefiting from the high modulation bandwidth (BW), low energy consumption and excellent optical performance, lead halide perovskite has attracted wide attention in visible light communication (VLC). However, the ion migration which results in mobile point defects in perovskite structures is recognized as a crucial key factor inducing the performance degradation. Here, the influence of ion migration in perovskite devices on the performance of VLC was systematically studied. The ion migration process is realized by mixing CsPbBr3 and CsPbI3 quantum dots, during which, the performance of the VLC system is reduced, but it can return to its initial state after stabilization. The on-off keying (OOK) modulation scheme of the perovskite light-emitting diode (LED) device was carried out, achieving a data rate of 90 Mbps.

9.
Nano Lett ; 23(17): 7797-7804, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37590122

ABSTRACT

Symmetry plays an essential role in the fundamental properties of a physical system. In this work, we report on the realization of tunable single-mode polariton lasing from highly excited Rydberg states via symmetry engineering. By breaking the symmetry of the polaritonic wave function through potential wells and controlling the spatial overlap between the gain region and the eigen mode, we are able to generate single-mode polariton lasing, reversibly and dynamically, from quantized polariton states. Increasing the asymmetry of the potential well, single-mode lasing can be achieved even for the highly excited Rydberg state with a principle quantum number of N = 14. Moreover, as a result of the excellent reservoir-eigen mode overlap and efficient spatial confinement, the threshold of lasing can be reduced up to 6 orders of magnitude, compared with those conventional pumping schemes. Our results present a new strategy toward the realization of thresholdless polariton lasing with dynamical tunability.

10.
Opt Express ; 31(13): 21924-21934, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37381278

ABSTRACT

Quantum dots (QDs) are exploited in visible light communication (VLC) due to their unique optical properties. However, it is still a challenge to conquer heating generation and photobleaching under prolonged illumination. In this paper, we proposed to utilize hexagonal boron nitride (h-BN) nanoplates to improve the thermal stability and photo stability of QDs and long-distance VLC data rate. After heating to 373 K and cooling to the initial temperature, photoluminescence (PL) emission intensity recovers to 62% of the original intensity and after 33 hours of illumination, PL emission intensity still maintains 80% of the initial intensity, while that of the bare QDs is only 34% and 53%, respectively. The QDs/h-BN composites perform a maximum achievable data rate of 98 Mbit/s by applying on-off keying (OOK) modulation, while the bare QDs are only 78 Mbps. In the process of extending the transmission distance from 0.3 m to 5 m, the QDs/h-BN composites exhibit superior luminosity corresponding to higher transmission data rates than bare QDs. Particularly, when the transmission distance reaches 5 m, the QDs/h-BN composites still show a clear eye diagram at a transmission rate of 50 Mbps while the eye diagram of bare QDs is indistinguishable at 25 Mbps. During 50 hours of continuous illumination, the QDs/h-BN composites keep a relatively stable bit error rate (BER) at 80 Mbps while that of QDs continuously increase, and the -3 dB bandwidth of QDs/h-BN composites keep around10 MHz while the bare QDs decrease from 12.6 MHz to 8.5 MHz. After illumination, the QDs/h-BN composites still indicate a clear eye diagram at a data rate of 50 Mbps while that of pure QDs is indistinguishable. Our results provide a feasible solution for realizing an enhanced transmission performance of QDs in longer-distance VLC.

11.
Adv Sci (Weinh) ; 10(21): e2301589, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37127890

ABSTRACT

Cavity-enhanced superfluorescence (CESF) in quantum dot (QD) system is an ultrafast and intense lasing generated by combination of quantum coupling effect and optically stimulated amplification effect, which can provide a new idea for realizing high quality blue light sources and address the limitation of conventional inefficient blue light sources. Modifying halide composition is a straightforward method to achieve blue emission in perovskite QD system. However, the spectral instability introduced by photoinduced halide phase segregation and low coupling efficiency between QDs and optical cavities make it challenging to achieve stable blue CESF in such halide-doped QD system. Herein, long-range-ordered, densely packed CsPbBr2 Cl QD-assembled superlattice microcavities in which the two core issues can be appropriately addressed are developed. The QD superlattice structure facilitates excitonic delocalization to decrease exciton-phonon coupling, thus alleviating photoinduced phase segregation. By combination of theoretical analysis and temperature-dependent photoluminescence (PL) measurements, the underlying photoinduced phase segregation mitigation mechanism in mixed halide superlattices is clarified. Based on the CsPbBr2 Cl QD superlattices with regularly geometrical structures, in which the gain medium can be strongly coupled to the naturally formed microcavity, stable and ultrafast (3 ps) blue CESF with excellent optical performance (threshold ≈33 µJ cm-2 , quality factor ≈1900) is realized.

12.
Environ Res ; 231(Pt 2): 116160, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37209988

ABSTRACT

Practical adsorbents with high efficiency are essential to effectively treating wastewater. Herein, a novel porous uranium adsorbent (PA-HCP) having a considerable amount of amine and phosphoryl groups was designed and synthesized by grafting polyethyleneimine (PEI) on a hyper-cross-linked fluorene-9-bisphenol skeleton via phosphoramidate linkers. Furthermore, it was used to treat uranium contamination in the environment. PA-HCP exhibited a large specific surface area (up to 124 m2/g) and a pore diameter of 2.5 nm. Batch uranium adsorptions on PA-HCP were investigated methodically. PA-HCP demonstrated a uranium sorption capacity of >300 mg/g in the pH range of 4-10 (C0 = 60 mg/L, T = 298.15 K), with its maximum capacity reaching 573.51 mg/g at pH = 7. The uranium sorption process obeyed the pseudo-second-order model and fitted well with the Langmuir isothermal. In the thermodynamic experiments, uranium sorption on PA-HCP was revealed to be an endothermic, spontaneous process. Even in the presence of competing metal ions, PA-HCP exhibited excellent sorption selectivity for uranium. Additionally, excellent recyclability can be achieved after six cycles. Based on FT-IR and XPS measurements, both the PO and -NH2 (and/or -NH-) groups on PA-HCP contributed to efficient uranium adsorption as a result of the strong coordination between these groups and uranium. Furthermore, the high hydrophilicity of the grafted PEI improved the dispersion of the adsorbents in water and facilitated uranium sorption. These findings suggest that PA-HCP can be used as an efficient and economical sorbent to remove U(VI) from wastewater.


Subject(s)
Polymers , Uranium , Water , Wastewater , Polyethyleneimine , Spectroscopy, Fourier Transform Infrared , Adsorption , Kinetics , Hydrogen-Ion Concentration
13.
ACS Appl Mater Interfaces ; 15(19): 23429-23438, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37140137

ABSTRACT

Optical physical unclonable functions (PUFs) have been considered as an effective tool for anti-counterfeiting owing to the uncontrollable manufacturing process and excellent resistance to machine-learning attacks. However, most optical PUFs exhibit fixed challenge-response pairs and static encoding structures after they are manufactured, which significantly impedes the actual development. Herein, we propose a tunable key-size PUF based on reversible phase segregation in mixed halide perovskites with uncontrollable Br/I ratios under variable power densities. The basic performance of encryption keys of low and high power density was evaluated and indicated a high degree of uniformity, uniqueness, and readout repeatability. Merging the binary keys of low and high power density, tunable key-size PUF is realized with higher security. The proposed tunable key-size PUF offers new insights into the development of dynamic-structure PUFs and demonstrates a novel scheme for achieving higher security of anti-counterfeiting and authentication.

14.
ACS Appl Mater Interfaces ; 15(4): 5577-5589, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36651633

ABSTRACT

Through molecule self-assembly and subsequent surface functionalization, novel uranium adsorbent AO-OB hierarchical self-assembled polyimide microspheres (AO-OBHSPIMs) were obtained by introducing the amidoxime groups into hierarchical self-assembled polyimide microspheres for the efficient and selective recovery of uranium from wastewater. The results of Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm showed that AO-OBHSPIMs were a semicrystalline polymer material with self-supporting hierarchical structure and low pore volume, and they were equipped with abundant amidoxime groups. Given the recognized selectivity of amidoxime groups and their hierarchical structure, AO-OBHSPIMs exhibited excellent selectivity to uranyl ions. Moreover, AO-OBHSPIMs exhibited good stability and recyclability and remarkable removal percentage within low-concentration solution (99.4%) and simulated uranium-containing wastewater (97.3%). AO-OBHSPIMs could be applied to fixed-bed column adsorption due to their large particle size and self-supporting hierarchical structure that can facilitate water flow. The in-depth discussion of the adsorption mechanism showed that the adsorption mainly depended on the combined action of electrostatic interactions and complexation, and the adsorption process was a spontaneous endothermic monolayer adsorption. In summary, AO-OBHSPIMs exhibited good application prospects in uranium-containing wastewater remediation.

15.
Opt Lett ; 47(20): 5393-5396, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36240371

ABSTRACT

Traditional electromagnetic interference shielding windows that can simultaneously reflect microwaves and transmit visible light are usually fabricated by depositing one metal mesh layer on the surface of the window. However, such a structure always suffers from strong Fabry-Perot resonance (FPR), which leads to the decline of shielding effectiveness (SE). Here, we analyze the mechanism of FPR from a perspective of the equivalent circuit model and further report a facile approach to minimize the FPR by depositing another high-resistance mesh layer on the back side of the shielding window, which can greatly reduce reflected waves, ensuring that interference cannot be formed. Simulation results prove that FPR can be effectively eliminated by the proposed method, and experiments further show that for a shielding window made with Schott B270 glass plate, the SE can be enhanced by 6.3 dB (76.6% energy attenuation) at declining points, while transmittance is only reduced by 1.6%.

16.
Colloids Surf B Biointerfaces ; 217: 112672, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35810609

ABSTRACT

Since biofouling challenges negatively influence the marine and transportation industries, developing effective antifouling materials have attracted extensive concern. A tyrosine-based antifouling phenolic resin (TPP resin) was synthesized using tyrosine as a natural phenol source. TPP exhibited shell-like surface morphology with micro-ripples and excellent anti-adhesion properties against bacteria and diatom. The micro-ripples surface might be caused by the strong hydrogen bonding or ionic interaction among tyrosine units resulting in microphase separation during the curing process. Tyrosine content in TPP resin has a great influence on the surface properties, morphology and antifouling characteristics. The higher the tyrosine content, the higher is the surface hydrophilicity, the denser and more regular is the micro-ripples morphology, and the stronger is the antifouling performance. TPP-60 % exhibited the best antifouling performance. Combination of the surface hydrophilicity and regular micro-ripples surface morphology afford TPP excellent antifouling performance. TPP resins offer a broad prospect for developing phenolic resin in the antifouling field.


Subject(s)
Biofouling , Biofouling/prevention & control , Formaldehyde , Hydrophobic and Hydrophilic Interactions , Phenols/pharmacology , Polymers , Surface Properties , Tyrosine
17.
RSC Adv ; 12(20): 12427-12435, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35480350

ABSTRACT

The surfactant-assisted preparation of carbon nanotube (CNT)/polymer composites has attracted the attention of scientists around the world. Here, CNT/epoxy nanocomposites were prepared using sodium carboxymethyl cellulose (CMC). The effect of CMC on the curing behaviors of epoxy resin (E44) and CNTs/E44 was studied using differential scanning calorimetry (DSC). The curing kinetics of the CMC/CNTs/E44 systems were examined using methods where the activation energy (E) is a constant and where E is a variable, respectively. The change of E with the conversion (α) was calculated using the Starink isoconversional method. For the E44 system, a significant variation of E was observed when the conversion increased from 0.05 to 0.95. The E variable method was introduced to this system to describe this phenomenon. In contrast to the method where E is a constant, the E variable method has better agreement with the experimental data. With these two methods, the curing kinetics of the CMC/CNTs/epoxy system can be understood comprehensively and accurately. Ultimately, the dynamic mechanical properties of neat E44, CMC/E44 and CMC/CNTs/E44 were investigated and compared, which showed that CMC/E44 had a higher storage modulus (E m) than the neat E44 and CMC/CNTs/E44 systems, and the CMC/CNTs/E44 system had a higher glass transition temperature (T g) and damping factor (tan δ) than the neat E44 and CMC/E44 systems.

18.
Nano Lett ; 22(7): 3026-3032, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35343702

ABSTRACT

We report the observation of coherent oscillations in the relaxation dynamics of an exciton-polariton condensate that were driven by parametric scattering processes. As a result of the interbranch scattering scheme and the nonlinear polariton-polariton interactions, such parametric scatterings exhibit a high scattering efficiency that leads to the fast depletion of the polariton condensate and the periodic shut-off of the bosonic stimulation processes, eventually causing relaxation oscillations. Employing polariton-reservoir interactions, the oscillation dynamics in the time domain can be projected onto the energy space. In theory, our simulations using the open-dissipative Gross-Pitaevskii equation are in excellent agreement with experimental observations. Surprisingly, the oscillation patterns, including many excitation pulses, are clearly visible in our time-integrated images, implying the high stability of the relaxation oscillations driven by polariton parametric scatterings.

19.
Front Chem ; 10: 845206, 2022.
Article in English | MEDLINE | ID: mdl-35345537

ABSTRACT

Semiconductor quantum dots (QDs) are a promising luminescent phosphor for next-generation lightings and displays. In particular, QD-based white light-emitting diodes (WLEDs) are considered to be the candidate light sources with the most potential for application in displays. In this work, we synthesized quaternary/ternary core/shell alloyed CdZnSeS/ZnSeS QDs with high bright emission intensity. The QDs show good thermal stability by performing high temperature-dependent experiments that range from 295 to 433 K. Finally, the WLED based on the CdZnSeS/ZnSeS QDs exhibits a luminous efficiency (LE) of 28.14 lm/W, an external quantum efficiency (EQE) of 14.86%, and a warm bright sunlight close to the spectrum of daylight (Commission Internationale de l'éclairage (CIE) coordinates 0.305, 0.371). Moreover, the photoluminescence (PL) intensity, LE, EQE, and correlated color temperature (CCT) of as-prepared QD WLED remained relatively stable with only slight changes in the luminescence stability experiment.

20.
Nano Lett ; 22(5): 2023-2029, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35200029

ABSTRACT

Whispering gallery modes in a microwire are characterized by a nearly equidistant energy spectrum. In the strong exciton-photon coupling regime, this system represents a bosonic cascade: a ladder of discrete energy levels that sustains stimulated transitions between neighboring steps. Here, by using a femtosecond angle-resolved spectroscopic imaging technique, the ultrafast dynamics of polaritons in a bosonic cascade based on a one-dimensional ZnO whispering gallery microcavity are explicitly visualized. Clear ladder-form build-up processes from higher to lower energy branches of the polariton condensates are observed, which are well reproduced by modeling using rate equations. Remarkably, a pronounced superbunching feature, which could serve as solid evidence for bosonic cascades, is demonstrated by the measured second-order time correlation factor. In addition, the nonlinear polariton parametric scattering dynamics on a time scale of hundreds of femtoseconds are revealed. Our understandings pave the way toward ultrafast coherent control of polaritons at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...