Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet ; 90(1): 75-80, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21677391

ABSTRACT

Test weight is an important trait in maize breeding. Understanding the genetic mechanism of test weight is important for effective selection of maize test weight improvement. In this study, quantitative trait loci (QTL) for maize test weight were identified. In the years 2007 and 2008, a F(2:3) population along with the parents Chang7-2 and Zheng58 were planted in Zhengzhou, People's Republic of China. Significant genotypic variation for maize test weight was observed in both years. Based on the genetic map containing 180 polymorphic SSR markers with an average linkage distance of 11.0 cM, QTL for maize test weight were analysed by mixed-model composite interval mapping. Five QTL, including four QTL with only additive effects, were identified on chromosomes 1, 2, 3, 4 and 5, and together explained 25.2% of the phenotypic variation. Seven pairs of epistatic interactions were also detected, involving 11 loci distributed on chromosomes 1, 2, 3, 4, 5 and 7, respectively, which totally contributed 18.2% of the phenotypic variation. However, no significant QTL x environment (QxE) interaction and epistasis x environment interaction effects were detected. The results showed that besides the additive QTL, epistatic interactions also formed an important genetic basis for test weight in maize.


Subject(s)
Breeding , Quantitative Trait Loci/genetics , Selection, Genetic , Zea mays/genetics , China , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Environment , Epistasis, Genetic , Genotype , Phenotype
2.
J Appl Genet ; 52(4): 403-6, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21559994

ABSTRACT

Understanding the inheritance of resistance to Fusarium ear rot is a basic prerequisite for an efficient resistance breeding in maize. In this study, 250 recombinant inbred lines (RILs) along with their resistant (BT-1) and susceptible (N6) parents were planted in Zhengzhou with three replications in 2007 and 2008. Each line was artificially inoculated using the nail-punch method. Significant genotypic variation in response to Fusarium ear rot was detected in both years. Based on a genetic map containing 207 polymorphic simple sequence repeat (SSR) markers with average genetic distances of 8.83 cM, the ear rot resistance quantitative trait loci (QTL) were analyzed by composite interval mapping with a mixed model (MCIM) across the environments. In total, four QTL were detected on chromosomes 3, 4, 5, and 6. The resistance allele at each of these four QTL was contributed by resistant parent BT-1, and accounted for 2.5-10.2% of the phenotypic variation. However, no significant epistasis interaction effect was detected after a two-dimensional genome scan. Among the four QTL, one QTL with the largest effect on chromosome 4 (bin 4.06) can be suggested to be a new locus for resistance to Fusarium ear rot, which broadens the genetic base for resistance to the disease and can be used for further genetic improvement in maize-breeding programs.


Subject(s)
Disease Resistance/genetics , Fusarium , Plant Diseases/microbiology , Quantitative Trait Loci , Seeds/microbiology , Zea mays/microbiology , Analysis of Variance , Chromosome Mapping , Chromosomes, Plant/genetics , Inbreeding , Plant Diseases/genetics , Seeds/genetics , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...