Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(1): 65-69, 2024 Jan 30.
Article in Chinese | MEDLINE | ID: mdl-38384219

ABSTRACT

The monitoring unit used in the nuclear magnetic resonance system, as an important unit of the system, faces a high thermal risk during its entire life cycle. This paper ensures the high efficiency and reliability of the thermal design of the product module from the two dimensions of structural design and device derating design. In order to reduce the risk of thermal design of electronic modules and comprehensively verify the effectiveness of thermal design of electronic modules, the design verification is carried out by combining simulation and experiment. In the simulation process, by establishing a thermal simulation model at the circuit board level, the crustal temperature of the core device is numerically calculated, and the index is compared with the thermal design index value and the test value, on the one hand, to verify the correctness of the simulation model. On the other hand, the validity of thermal design is verified. In the testing process, a thermal test platform for product modules is built, and the thermal characteristics test values of the core components of the module under extreme electrical conditions are obtained, and the corresponding conversion methods are used to predict the thermal performance and thermal design margin of the product at different altitudes. The results show that the electronic module can meet the thermal design requirements in terms of structural design and derating design of core components, and can ensure that the product module can work safely and reliably during the entire life cycle of the NMR system.


Subject(s)
Electronics , Magnetic Resonance Imaging , Reproducibility of Results , Temperature , Magnetic Resonance Spectroscopy
2.
Materials (Basel) ; 16(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37176374

ABSTRACT

In this paper, the large deflection of the foam-filled triangular tube (FFTT) is studied analytically and numerically under transverse loading. Considering the strengths of the foam and the tube, the yield criterion of FFTT is established. Based on the yield criterion, a theoretical model for the large deflection of the clamped triangular tube filled with foam under transverse loading is developed. The numerical simulations are carried out using ABAQUS/Standard software, and the analytical results are compared with the numerical ones. The effects of foam strength, thickness of the tube, and the width of the punch on the load-bearing capacity and energy absorption of the clamped FFTT loaded transversally are discussed in detail. It is demonstrated that the load-bearing ability and the energy absorption increase with increasing foam strength, tube thickness, and punch width. The closer the loading position is to the clamped end, the greater the increases in the capacity of load bearing and the energy absorption of the triangular tube filled with foam. The theoretical model can be used to foresee the large deflection of metal FFTT under transverse loading.

3.
Plant Dis ; 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33185519

ABSTRACT

Maize [Zea mays L.] is an important food and feed crops in northeast of China. In 2019, maize seedling blight with an incidence of up to 25% was found at the field in Fushun city of Liaoning Province. Typical symptoms of seedlings were yellow, thin, wilt and die. The leaves gradually became yellow from the base of the plant to the top. Root system was poorly developed. The primary roots were usually discolored and rotted. And faintly pink or puce-coloured mould was found on seeds of the rotted seedings. Symptomatic roots of diseased seedling were collected and surface-disinfested with 70% ethanol for 1 min and then in 2% NaClO for 3 min, rinsed with sterilized water three times, cut into small pieces and placed on potato dextrose agar (PDA) medium for 5 days at 25 °C. Colonies on PDA were pink to dark red with fluffy aerial mycelium and red to aubergine pigmentation with the age. The causal agent was transferred to carnation leaf agar (CLA) medium and incubated at 25°C under a 12-h light-dark cycle. 12 Pure cultures were obtained from single conidia with an inoculation needle under stereomicroscope. The harvested macroconidia were hyaline, falcate with single foot cells, 3-5 septate and 28.2- 43.5 µm × 3.7 - 4.9 µm. Chlamydospores were globose to subglobose (5 to 13.5 µm). No microconidia were found. The perithecia were black, ostiolate subglobose. Asci were hyaline, clavate, measuring 58.1- 83.9 µm × 7.7- 11.9 µm and contained eight ascospores. Morphological characters of the pathogen agreed well with descriptions of Fusarium asiaticum (O'Donnell et al.2004; Leslie and Summerell 2006). To confirm the identity, partial translation elongation factor 1 alpha (TEF1-a) gene and rDNA internal transcribed spacer (ITS) region of isolate MSBL-4 were amplified and sequenced (O'Donnell et al. 2015; White et al.1990). BLASTn analysis of both TEF sequence (MT330257) and ITS sequence (MT322117), revealed 100% sequence identity with F. asiaticum KT380116 and KX527878, respectively. The isolate MSBL-4 was NIV chemotype as determined by Tri13F/DON, Tri13NIV/R (Chandler et al, 2003) assays. Pathogenicity studies were conducted on maize hybrid "Liaodan 565". Inoculum of F. asiaticum was prepared from the culture of MSBL-4 incubate in 2% mung beans juice on a shaker (150 rpm) at 25°C for 48 hours. The five liter pots (10 pots) were filled with sterilized field soil and five of them were mixed with conidial suspension (300mL in each pot) at 2 × 105 conidia per ml. Ten kernels per pot were surface disinfected in 2% sodium hypochlorite for 5 min, rinsed with sterilized water and planted. Five pots were inoculated and another uninoculated five pots served as controls. The pots were maintained in a greenhouse at 22-26°C for 40 days. Leaves of the plants in inoculated pots were yellowing and the roots became discolored or necrotic rot at 4 weeks after seedling emergence. All characteristics of the disease were similar to those observed in field. Non-inoculated control plants had no symptoms. Fusarium asiaticum was reisolated from inoculated plants and was identical to the original isolate. The experiment was repeated once with similar results. To our knowledge, this is the first report of seedling blight caused by F. asiaticum on maize in northeast China, and it has posed a threat to maize production of China. References: Leslie J F and Summerell BA. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, pp 176-179. O'Donnell et al.2004. Fungal Genetics and Biology 41: 600-623. O' Donnell et al. 2015. Phytoparasitica 43:583-595. White T J et al. 1990. Academic Press, San Diego, CA, pp 315-322. Chandler E A et al. 2003. Physiological and Molecular Plant Pathology 62(6): 355-367.

4.
PLoS One ; 13(7): e0201588, 2018.
Article in English | MEDLINE | ID: mdl-30063754

ABSTRACT

Fusarium verticillioides, an important maize pathogen produces fumonisins and causes stalk and ear rot; thus, we are aimed to clarify its infection cycle by assessing enhanced green fluorescent protein (EGFP) expression in stalk and ear rot strains. Maize seeds were inoculated with stable and strongly pathogenic transformants. To investigate the degree of infection, inoculated plants were observed under a stereo fluorescence microscope, and affected tissue strains were detected using PCR. We found that both transformants infected maize. Hyphae infected the plants from radical to the stem and extended to the ear and infected ear kernels caused a second infection. This process formed the infection cycle.


Subject(s)
Fusariosis/pathology , Fusarium/pathogenicity , Plant Diseases/microbiology , Zea mays/microbiology , Fusariosis/microbiology , Fusarium/genetics , Green Fluorescent Proteins/genetics , Organisms, Genetically Modified , Plant Stems/microbiology , Seeds/microbiology , Zea mays/growth & development
5.
PLoS One ; 10(12): e0145549, 2015.
Article in English | MEDLINE | ID: mdl-26689370

ABSTRACT

Head smut, caused by the fungus Sphacelotheca reiliana (Kühn) Clint, is a devastating threat to maize production. In this study, QTL mapping of head smut resistance was performed using a recombinant inbred line (RIL) population from a cross between a resistant line "QI319" and a susceptible line "Huangzaosi" (HZS) with a genetic map constructed from genotyping-by-sequencing (GBS) data and composed of 1638 bin markers. Two head smut resistance QTL were identified, located on Chromosome 2 (q2.09HR) and Chromosome 5 (q5.03HR), q2.09HR is co-localized with a previously reported QTL for head smut resistance, and the effect of q5.03HR has been validated in backcross populations. It was also observed that pyramiding the resistant alleles of both QTL enhanced the level of resistance to head smut. A genome-wide association study (GWAS) using 277 diverse inbred lines was processed to validate the mapped QTL and to identify additional head smut resistance associations. A total of 58 associated SNPs were detected, which were distributed in 31 independent regions. SNPs with significant association to head smut resistance were detected within the q2.09HR and q5.03HR regions, confirming the linkage mapping results. It was also observed that both additive and epistastic effects determine the genetic architecture of head smut resistance in maize. As shown in this study, the combined strategy of linkage mapping and association analysis is a powerful approach in QTL dissection for disease resistance in maize.


Subject(s)
Plant Diseases/genetics , Quantitative Trait Loci , Zea mays/genetics , Zea mays/microbiology , Chromosome Mapping , Chromosomes, Plant , Disease Resistance/genetics , Genome-Wide Association Study , Genotyping Techniques/methods , Plant Breeding , Plant Diseases/microbiology , Reproducibility of Results , Ustilaginales/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...