Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38004977

ABSTRACT

Auxetic re-entrant honeycomb (AREH) structures, consisting of a single soft or tough material, have long faced the challenge of balancing stiffness and rebound resilience. To achieve this balance, dual-material printing technology is employed to enhance shock absorption by combining layers of soft and tough materials. Additionally, a novel structure called the curved re-entrant honeycomb (CREH) structure has been introduced to improve stiffness. The selected materials for processing the composite structures of AREH and CREH are the rigid thermoplastic polymer polylactic acid (PLA) and the soft rubber material thermoplastic polyurethane (TPU), created utilizing fused deposition modeling (FDM) 3D printing technology. The influence of the material system and structure type on stress distribution and mechanical response was subsequently investigated. The results revealed that the dual-material printed structures demonstrated later entry into the densification phase compared to the single-material printed structures. Moreover, the soft material in the interlayer offered exceptional protection, thereby ensuring the overall integrity of the structure. These findings effectively serve as a reference for the design of dual-material re-entrant honeycombs.

2.
Micromachines (Basel) ; 14(4)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37421048

ABSTRACT

As an effective technique for fabricating conductive and thermally conductive polymer composites, a multi-filler system incorporates different types and sizes of multiple fillers to form interconnected networks with improved electrical, thermal, and processing properties. In this study, DIW forming of bifunctional composites was achieved by controlling the temperature of the printing platform. The study was based on enhancing the thermal and electrical transport properties of hybrid ternary polymer nanocomposites with multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs). With thermoplastic polyurethane (TPU) used as the matrix, the addition of MWCNTs, GNPs and both mixtures further improved the thermal conductivity of the elastomers. By adjusting the weight fraction of the functional fillers (MWCNTs and GNPs), the thermal and electrical properties were gradually explored. Here, the thermal conductivity of the polymer composites increased nearly sevenfold (from 0.36 W·m-1·k-1 to 2.87 W·m-1·k-1) and the electrical conductivity increased up to 5.49 × 10-2 S·m-1. It is expected to be used in the field of electronic packaging and environmental thermal dissipation, especially for modern electronic industrial equipment.

3.
J Biochem ; 171(1): 131-140, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34652441

ABSTRACT

Long non-coding RNA actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1) shows crucial regulatory function in tumor progression. Nonetheless, the biological function and underlying mechanism of AFAP1-AS1 in the progression of thyroid cancer is still unclear. Expressions of AFAP1-AS1, miR-204-3p and DUSP4 were quantified utilizing quantitative real-time polymerase chain reaction and/or western blot. In loss-of-function and gain-of-function assays, cell proliferation, migration and invasion were appraised by CCK-8 assay, wound healing assay, Transwell migration and invasion assays, respectively. Luciferase reporter assay was employed for validating the interaction between miR-204-3p and AFAP1-AS1 or the 3'UTR of dual specificity phosphatase 4 (DUSP4). AFAP1-AS1 was highly expressed in thyroid cancer tissues and cell lines. Highly expressed AFAP1-AS1 was in association with advanced TNM stage and positive lymph node metastasis. Knockdown of AFAP1-AS1 suppressed the proliferation, migration and invasion of thyroid cancer cells, and overexpression of AFAP1-AS1 induced a reversed effect. MiR-204-3p was targetedly repressed by AFAP1-AS1, and miR-204-3p could negatively regulate DUSP4 expression. AFAP1-AS1 augmented the expression of DUSP4 via repressing miR-204-3p, and the effects of AFAP1-AS1 overexpression on thyroid cancer cells were also partly abolished by miR-204-3p restoration. In summary, AFAP1-AS1 facilitates thyroid cancer cell proliferation, migration and invasion by regulating miR-204-3p/DUSP4 axis.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Thyroid Neoplasms , Cell Line, Tumor , Cell Movement , Cell Proliferation , Dual-Specificity Phosphatases/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Mitogen-Activated Protein Kinase Phosphatases , RNA, Long Noncoding/genetics , Thyroid Neoplasms/genetics
4.
ACS Appl Mater Interfaces ; 13(48): 58124-58133, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34797974

ABSTRACT

Interfacial solar-driven evaporation provides one of the most promising green and sustainable technologies to deal with the knotty water crisis by extracting vapor from a variety of water sources powered by solar energy. Advanced photothermal materials play critical roles in interfacial solar-driven evaporation by photothermal conversion and heat localization. Herein, inspired by the unique hierarchical structure and light-harvesting function of diatoms, we propose a novel photothermal material with a diatom-like hierarchical nanostructure derived from TiO2-PANi-decorated bilayer melamine foam (TiO2-PANi@MF) for solar-driven clean water generation. The diatom-like hierarchical nanostructured TiO2-PANi@MF can realize full-spectrum light absorption and photothermal conversion by enhancing multiple light reflection and light scattering. Thanks to the diatom-like hierarchical nanostructure, TiO2-PANi@MF not only impressively achieves an evaporation rate of 2.12 kg m-2 h-1 under 1 sun irradiation but also shows a high solar steam conversion efficiency up to 88.9%. Notably, the TiO2-PANi composite also endows TiO2-PANi@MF with photocatalytic degradation capability. Apart from the excellent steam generation capability, optimized TiO2-PANi@MF also provides the high photocatalytic efficiency of dye degradation and maintains a high evaporation rate of more than 2 kg m-2 h-1. We believe that the proposed photothermal material with a diatom-like hierarchical nanostructure can envision promising practical applications in seawater desalination and sewage purification.

SELECTION OF CITATIONS
SEARCH DETAIL
...