Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Chemosphere ; 361: 142578, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857631

ABSTRACT

Cadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 µg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 µg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 µg/L Cd2+, and Maribacter at 300 µg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 µg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.


Subject(s)
Cadmium , Metabolome , Penaeidae , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Penaeidae/drug effects , Penaeidae/growth & development , Penaeidae/microbiology , Penaeidae/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Metabolome/drug effects , Microbiota/drug effects , Aquaculture , Gastrointestinal Microbiome/drug effects , Gills/metabolism , Gills/drug effects
2.
Anal Chem ; 96(23): 9416-9423, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38809415

ABSTRACT

A noninvasive sampling technology was conceived, employing a disposable acupuncture needle in conjunction with high-resolution mass spectrometry (termed as noninvasive direct sampling extractive electrospray ionization mass spectrometry, NIDS-EESI-MS) to scrutinize the epidermal mucus of Nile tilapia for insights into the metabolic dysregulation induced by polypropylene nano- and microplastics. This analytical method initiates with the dispensing of an extraction solvent onto the needles coated with the mucus sample, almost simultaneously applying a high voltage to generate analyte ions. This innovative strategy obliterates the necessitation for laborious sample preparation, thereby simplifying the sampling process. Employing this technique facilitated the delineation of a plethora of metabolites, encompassing, but not confined to, amino acids, peptides, carbohydrates, ketones, fatty acids, and their derivatives. Follow-up pathway enrichment analysis exposed notable alterations within key metabolic pathways, including the biosynthesis of phenylalanine, tyrosine, and tryptophan, lysine degradation, as well as the biosynthesis and metabolism of valine, leucine, and isoleucine pathways in Nile tilapia, consequent to increased concentrations of polypropylene nanoplastics. These metabolic alterations portend potential implications such as immune suppression, among other deleterious outcomes. This trailblazing application of this methodology not only spares aquatic life from sacrifice but also inaugurates an ethical paradigm for conducting longitudinal studies on the same organisms, facilitating detailed investigations into the long-term effects of environmental pollutants. This technique enhances the ability to observe and understand the subtle yet significant impacts of such contaminants over time.


Subject(s)
Cichlids , Microplastics , Mucus , Polypropylenes , Animals , Microplastics/analysis , Polypropylenes/chemistry , Cichlids/metabolism , Mucus/metabolism , Mucus/chemistry , Epidermis/metabolism , Epidermis/chemistry , Spectrometry, Mass, Electrospray Ionization
3.
Plants (Basel) ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794386

ABSTRACT

Straw covering is a protective tillage measure in agricultural production, but there is relatively little research on the allelopathic effects of corn straw on weeds and foxtail millet. This experiment studied the allelopathic effects of corn straw on four weeds (Chenopodium album, Setaria viridis, Echinochloa crus-galli and Amaranthus retroflexus) in foxtail millet fields, and also measured the growth indicators of foxtail millet. The study consisted of Petri dish and field experiments. Five treatments were used in the Petri dish experiment: clear water as control (0 g/L, TCK) and four types of corn straw water extracts. They were, respectively, the stock solution (100 g/L, T1), 10 X dilution (10 g/L, T2), 50 X dilution (2 g/L, T3), and 100 X dilution (1 g/L, T4) of corn straw water extracts. Additionally, seven treatments were set up in the field experiment, consisting of three corn straw covering treatments, with covering amounts of 3000 (Z1), 6000 (Z2) and 12,000 kg/ha (Z3), and four control treatments-one treatment with no corn straw cover (CK) and three treatments involving the use of a black film to create the same shading area as the corn straw covered area, with black film coverage areas of 50% (PZ1), 70% (PZ2), and 100% (PZ3), respectively. The results showed that the corn straw water extract reduced the germination rate of the seeds of the four weeds. The T1 treatment resulted in the allelopathic promotion of C. album growth but the inhibition of S. viridis, E. crus-galli, and A. retroflexus growth. Treatments T2, T3, and T4 all induced the allelopathic promotion of the growth of the four weeds. The order of the effects of the corn straw water extracts on the comprehensive allelopathy index of the four weed seeds was as follows: C. album > S. viridis > A. retroflexus > E. crus-galli. With an increase in the corn straw mulching amount, the density and total coverage of the four weeds showed a gradual downward trend, whereas the plant control effect and fresh weight control effect showed a gradual upward trend. All indices showed the best results under 12,000 kg/ha of mulching and returning to the field. Overall, corn straw coverage significantly impacted the net photosynthetic rate and transpiration rate of foxtail millet and increased the yield of foxtail millet. Under coverages of 6000 and 12,000 kg/ha, the growth of foxtail millet is better. Based on our findings, we recommend a corn straw coverage of 12,000 kg/ha for the allelopathic control of weeds in foxtail millet fields.

4.
Int J Nanomedicine ; 19: 2265-2284, 2024.
Article in English | MEDLINE | ID: mdl-38476273

ABSTRACT

Introduction: Glaucoma is a prevalent cause of irreversible vision impairment, characterized by progressive retinal ganglion cells (RGCs) loss, with no currently available effective treatment. Rapamycin (RAPA), an autophagy inducer, has been reported to treat glaucoma in rodent models by promoting RGC survival, but its limited water solubility, systemic toxicity, and pre-treatment requirements hinder its potential clinical applications. Methods: Chitosan (CS)-RAPA carbon dot (CRCD) was synthesized via hydrothermal carbonization of CS and RAPA and characterized by transmission electron microscopy, Fourier transform infrared spectra, and proton nuclear magnetic resonance. In vitro assays on human umbilical cord vein endothelial and rat retinal cell line examined its biocompatibility and anti-oxidative capabilities, while lipopolysaccharide-stimulated murine microglia (BV2) assays measured its effects on microglial polarization. In vivo, using a mouse retinal ischemia/reperfusion (I/R) model by acute intraocular pressure elevation, the effects of CRCD on visual function, RGC apoptosis, oxidative stress, and M2 microglial polarization were examined. Results: CRCD exhibited good water solubility and anti-oxidative capabilities, in the form of free radical scavenging. In vitro, CRCD was bio-compatible and lowered oxidative stress, which was also found in vivo in the retinal I/R model. Additionally, both in vitro with lipopolysaccharide-stimulated BV2 cells and in vivo with the I/R model, CRCD was able to promote M2 microglial polarization by activating autophagy, which, in turn, down-regulated pro-inflammatory cytokines, such as IL-1ß and TNF-α, as well as up-regulated anti-inflammatory cytokines, such as IL-4 and TGF-ß. All these anti-oxidative and anti-inflammatory effects ultimately aided in preserving RGCs, and subsequently, improved visual function. Discussion: CRCD could serve as a potential novel treatment strategy for glaucoma, via incorporating RAPA into CDs, in turn not only mitigating its toxic side effects but also enhancing its therapeutic efficacy.


Subject(s)
Chitosan , Glaucoma , Reperfusion Injury , Rats , Animals , Mice , Humans , Microglia/pathology , Chitosan/pharmacology , Sirolimus/pharmacology , Carbon/pharmacology , Lipopolysaccharides/pharmacology , Glaucoma/drug therapy , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Autophagy , Cytokines/metabolism , Water , Reperfusion Injury/drug therapy
5.
J Colloid Interface Sci ; 660: 534-544, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266335

ABSTRACT

Suppression of vascular cell senescence is of great significance in preventing cardiovascular diseases such as hypertension and atherosclerosis. The oxidative stress damage caused by reactive oxygen species (ROS) can lead to cellular senescence. Rapamycin (Rapa) is well known to suppress cell senescence via mammalian target of rapamycin (mTOR) pathway. However, poor water solubility and lack of ROS scavenging ability limit the further development of Rapa. To improve the solubility of Rapa and endow with ROS scavenging ability, Rapa functionalized carbon dots (Rapa-CDs) are target-oriented synthesized via free radical polymerization combination with hydrothermal carbonization. Rapa-CDs improve the solubility of Rapa and show ROS scavenging abilities. The solubility of Rapa-CDs with 9.41 g is improved 3.6 × 104 times higher than that of Rapa (2.6 × 10-4 g). The half maximal inhibitory concentration (IC50) of Rapa-CDs toward hydroxyl radical (•OH) and 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH•) are 0.18 and 0.17 mg/mL, respectively. Rapa-CDs show anti-oxidative stress effect in HEVECs (Human Umbilical Vein Endothelial Cells) via reducing ROS levels by 87 %. Rapa-CDs alleviate HUVECs senescence by suppressing mTOR overactivation, attenuate the expression of P53, P21 and P16. The study demonstrates the target-oriented synthesis of drugs functionalized CDs with anti-senescence via dual-pathway of anti-oxidative stress and mTOR.


Subject(s)
Signal Transduction , Sirolimus , Humans , Signal Transduction/physiology , Reactive Oxygen Species/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Cellular Senescence , Carbon/pharmacology
6.
Cancer Rep (Hoboken) ; 7(1): e1925, 2024 01.
Article in English | MEDLINE | ID: mdl-38043920

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) has a high mortality rate. Ferroptosis is linked to tumor initiation and progression. AIMS: This study aims to develop prognostic models of ferroptosis-related lncRNAs, evaluate the correlation between differentially expressed genes and tumor microenvironment, and identify prospective drugs for managing LUAD. METHODS AND RESULTS: In this study, transcriptomic and clinical data were downloaded from the TCGA database, and ferroptosis-related genes were obtained from the FerrDb database. Through correlation analysis, Cox analysis, and the LASSO algorithm for constructing a prognostic model, we found that ferroptosis-related lncRNA-based gene signatures (FLncSig) had a strong prognostic predicting ability in the LUAD patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments reconfirmed that ferroptosis is related to receptor-ligand activity, enzyme inhibitor activity, and the IL-17 signaling pathway. Next, tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE) algorithms, and pRRophetic were used to predict immunotherapy response and chemotherapy sensitivity. The IMvigor210 cohort was also used to validate the prognostic model. In the tumor microenvironment, Type_II_IFN_Response and HLA were found to be a group of low-risk pathways, while MHC_class_I was a group of high-risk pathways. Patients in the high-risk subgroup had lower TIDE scores. Exclusion, MDSC, CAF, and TAMM2 were significantly and positively correlated with risk scores. In addition, we found 15 potential therapeutic drugs for LUAD. Finally, differential analysis of stemness index based on mRNA expression (mRNAsi) indicated that mRNAsi was correlated with gender, primary tumor (T), distant metastasis (M), and the tumor, node, and metastasis (TNM) stage in LUAD patients. CONCLUSIONS: In conclusion, the prognostic model based on FLncSig can alleviate the difficulty in predicting the prognosis and immunotherapy of LUAD patients. The identified FLncSig and the screened drugs exhibit potential for clinical application and provide references for the treatment of LUAD.


Subject(s)
Adenocarcinoma , Ferroptosis , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Retrospective Studies , Ferroptosis/genetics , Prognosis , Cell Transformation, Neoplastic , Lung , Tumor Microenvironment/genetics
7.
Fitoterapia ; 173: 105790, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158160

ABSTRACT

Three new furano-lactones, asperilactones A-C (1-3), and two known compounds silvaticol (4) and violaceic acid (5) were isolated from an ethanol extract of Aspergillus nidulans, a fungus isolated from the Annelida Whitmania pigra Whitman (Haemopidae). Their structures were elucidated by a combination of spectroscopy, ECD calculations, comparing optical rotation values, and single-crystal X-ray diffraction analyses. Asperilactone A (1) represented the first example of furano-lactone with an unusual 2-thia-6-oxabicyclo[3.3.0]octane ring system. Asperilactones A and B showed weak toxicity against the HL-60 and RKO.


Subject(s)
Aspergillus nidulans , Lactones/chemistry , Molecular Structure , Crystallography, X-Ray , Spectrum Analysis
8.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068935

ABSTRACT

While purified protein derivative (PPD) is commonly used as skin diagnostic reagent for tuberculosis (TB) infection, it cannot distinguish effectively Bacillus Calmette-Guérin (BCG) vaccination from Mycobacterium tuberculosis (MTB) complex and nontuberculous mycobacteria infection. The new skin reagent ESAT6-CFP10 (EC) has favorable sensitivity and specificity, which can overcome limitations associated with PPD. At present, EC skin test reactions are mainly characterized by erythema, while PPD mainly causes induration. We conducted a comparative study on the potential differences between EC-induced erythema and PPD-induced induration using a guinea pig model. The size of EC-dependent erythema was similar to that of PPD-induced induration, and an inflammatory response characterized by the infiltration of monocytes, macrophages and lymphocytes, as well as tissue damage, appeared at the injection site. The lymphocytes included CD4+ T and CD8+ T cells, which released IFN-γ as the main cytokine. Both EC erythema and PPD induration could lead to increased levels of acute-phase proteins, and the differential pathways were similar, thus indicating that the main induced immune pathways were similar. The above results indicated that erythema produced by EC could generate the main delayed-type hypersensitivity (DTH) response characteristic of PPD induration, thereby suggesting that erythema might also have a certain diagnostic significance and provide a possible theoretical basis for its use as a diagnostic indicator for detecting MTB infection.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Animals , Guinea Pigs , Recombinant Fusion Proteins/genetics , Tuberculin , CD8-Positive T-Lymphocytes , Tuberculosis/diagnosis , Erythema , Antigens, Bacterial
9.
ACS Appl Mater Interfaces ; 15(48): 55335-55345, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37994814

ABSTRACT

The synthesis of photothermal carbon/hydroxyapatite composites poses challenges due to the binding modes and relatively low photothermal conversion efficiency. To address these challenges, the calcium ions chelated by photothermal carbon dots (PTC-CDs) served as the calcium source for the synthesis of photothermal carbon dots chelated hydroxyapatite (PTC-HA) filler via the coprecipitation method. The coordination constant K and chelation sites of PTC-HA were 7.20 × 102 and 1.61, respectively. Compared to PTC-CDs, the coordination constant K and chelation sites of PTC-HA decreased by 88 and 35% due to chelating to hydroxyapatite, respectively. PTC-HA possesses fluorescence and photothermal performance with a 62.4% photothermal conversion efficiency. The incorporation of PTC-HA filler significantly enhances as high as 76% the adhesion performance of the adhesive hydrogel. PTC-HA with high photothermal conversion efficiency and enhancing adhesion performance holds promise for applications in high photothermal conversion efficiency, offering tissue adhesive properties and fluorescence capabilities to the hydrogel.

10.
Vaccines (Basel) ; 11(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37896956

ABSTRACT

To achieve maximum efficacy, vaccines, such as subunit, recombinant, and conjugate vaccines, necessitate the incorporation of immunostimulators/adjuvants. Adjuvants play a vital role in bolstering and extending the strength of the immune response while also influencing its type. As antigen and adjuvant formulations become more intricate, it becomes imperative to establish a well-characterized and robust formulation to ensure consistent and reproducible outcomes in preclinical and clinical studies. In the present study, an HPV bivalent vaccine was developed using a BC02 adjuvant in conjunction with HPV 16 and 18 L1 VLP antigens produced from an E. coli expression system. The study involved evaluating the adjuvant formulation and in vivo immunogenicity in mice. Remarkably, a medium-dose of BCG-CpG-DNA combined with a low-dose of aluminum hydroxide substantially enhanced the immunogenicity of HPV16 and 18 VLPs, resulting in improved cellular and humoral immune responses.

12.
Clin Cosmet Investig Dermatol ; 16: 2409-2417, 2023.
Article in English | MEDLINE | ID: mdl-37694193

ABSTRACT

Objective: To explore the application value of adjustable skin stretchers for repairing skin wound defects. Methods: Twenty patients with skin defects were included in this study. The largest defect was measured to be 45.4 cm × 13.3 cm (length × width) and the smallest one was 4.4 cm × 3.2 cm (length × width). All patients were subjected to adjustable skin stretchers and the short- and long-term clinical efficacy was evaluated. Results: The wounds of all enrolled patients were healed completely except for one patient with a dorsal foot infection (the patient requested to return to the local county hospital for further treatment), with a total satisfaction of 100%. Postoperative 3-month follow-up showed scar formation, a little local hyperpigmentation, normal skin elasticity, and intact organs of involved cases, thus signifying the significant impact of adjacent joint activities. Conclusion: Adjustable skin stretchers can accurately control the tension on wound margins, breaking the limitation of previous stretchers to provide objective quantitative indicators for clinical application. These stretchers are characterized by high use-value and are worth promoting.

14.
ACS Appl Mater Interfaces ; 15(34): 40163-40177, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37603390

ABSTRACT

The bone-targeting mechanism of clinic bisphosphonate-type drugs, such as alendronate, risedronate, and ibandronate, relies on chelated calcium ions on the surface of the bone mineralized matrix for the treatment of osteoporosis. EGTA with aminocarboxyl chelating ligands can specifically chelate calcium ions. Inspired by the bone-targeting mechanism of bisphosphonates, we hypothesize that EGTA-derived carbon dots (EGTA-CDs) hold bone-targeting ability. For the target-oriented synthesis of EGTA-CDs and to endow CDs with bone targeting, we designed calcium ion chelating agents as precursors, including aminocarboxyl chelating agents (EGTA and EDTA) and bisphosphonate agents (ALN and HEDP) for the target-oriented synthesis of aminocarboxyl-derived CDs (EGTA-CDs and EDTA-CDs) and bisphosphonate-derived CDs (ALN-CDs and HEDP-CDs) with high synthetic yield. The synthetic yield of EGTA-CDs reached 87.6%. Aminocarboxyl-derived CDs and bisphosphonate-derived CDs retain the chelation ability of calcium ions and can specifically bind calcium ions. The chemical environment bone-targeting value coordination constant K and chelation sites of EGTA-CDs were 6.48 × 104 M-1 and 4.12, respectively. A novel method was established to demonstrate the bone-targeting capability of chelate-functionalized carbon dots using fluorescence quenching in a simulated bone trauma microenvironment. EGTA-CDs exhibit superior bone-targeting ability compared with other aminocarboxyl-derived CDs and bisphosphonate-derived CDs. EGTA-CDs display exceptional specificity toward calcium ions and better bone affinity than ALN-CDs, suggesting their potential as novel bone-targeting drugs. EGTA-CDs with strong calcium ion chelating ability have calcium ion affinity in simulated body fluid and bone-targeting ability in a simulated bone trauma microenvironment. These findings offer new avenues for the development of advanced bone-targeting strategies.


Subject(s)
Calcium , Etidronic Acid , Egtazic Acid , Edetic Acid , Chelating Agents/pharmacology , Diphosphonates/pharmacology , Carbon
15.
Pest Manag Sci ; 79(10): 4057-4065, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37291074

ABSTRACT

BACKGROUND: Spodoptera frugiperda is an invasive, widespread agricultural pest in China. However, there have been no reports assessing feeding damage on wheat caused by S. frugiperda. To clarify the fitness and potential damage of S. frugiperda to wheat, this study analyzed the population parameters of S. frugiperda fed on wheat in a laboratory and simulated the potential damage in field conditions. RESULTS: The population parameters of S. frugiperda were compared using life tables on wheat at the seedling and adult plant stages. The adult female longevity of S. frugiperda varied from 12.29 days on seedling plants to 16.60 days on adult plants. Egg production was significantly higher when fed on wheat at the seedling stage (646.34 eggs) than when fed on adult plants (495.86 eggs). On wheat at the seedling and adult plant stages, the mean generation times were 35.42 and 38.34 days, respectively, and the intrinsic rates of increase were 0.15 and 0.14, respectively. Spodoptera frugiperda completed development and increased its population in wheat at both plant growth stages. In the field, the effect of different larval densities on the 1000-kernel weight of wheat was significantly different. An action threshold of 40 larvae per m2 was estimated, and the higher population densities caused a yield loss of 17.7%. CONCLUSION: Spodoptera frugiperda can complete its life cycle on wheat at different stages. Wheat can serve as an alternative host for S. frugiperda. If S. frugiperda reaches 320 larvae per m2 density during wheat growth, it will cause yield loss exceeding 17%. © 2023 Society of Chemical Industry.


Subject(s)
Triticum , Zea mays , Animals , Larva , Spodoptera , Population Density , Life Tables
16.
Environ Int ; 176: 107971, 2023 06.
Article in English | MEDLINE | ID: mdl-37220671

ABSTRACT

The observation-based air pollution forecasting method has high computational efficiency over traditional numerical models, but a poor ability in long-term (after 6 h) forecasting due to a lack of detailed representation of atmospheric processes associated with the pollution transport. To address such limitation, here we propose a novel real-time air pollution forecasting model that applies a hybrid graph deep neural network (GNN_LSTM) to dynamically capture the spatiotemporal correlations among neighborhood monitoring sites to better represent the physical mechanism of pollutant transport across the space with the graph structure which is established with features (angle, wind speed, and wind direction) of neighborhood sites to quantify their interactions. Such design substantially improves the model performance in 72-hour PM2.5 forecasting over the whole Beijing-Tianjin-Hebei region (overall R2 increases from 0.6 to 0.79), particularly for polluted episodes (PM2.5 concentration > 55 µg/m3) with pronounced regional transport to be captured by GNN_LSTM model. The inclusion of the AOD feature further enhances the model performance in predicting PM2.5 over the sites where the AOD can inform additional aloft PM2.5 pollution features related to regional transport. The importance of neighborhood site (particularly for those in the upwind flow pathway of the target area) features for long-term PM2.5 forecast is demonstrated by the increased performance in predicting PM2.5 in the target city (Beijing) with the inclusion of additional 128 neighborhood sites. Moreover, the newly developed GNN_LSTM model also implies the "source"-receptor relationship, as impacts from distanced sites associated with regional transport grow along with the forecasting time (from 0% to 38% in 72 h) following the wind flow. Such results suggest the great potential of GNN_LSTM in long-term air quality forecasting and air pollution prevention.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Forecasting , Neural Networks, Computer
17.
Plant Dis ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142964

ABSTRACT

Taxus chinensis var. mairei is the endemic, endangered, and first-class protected tree species in China. This species is considered as an important resource plant because it can produce Taxol which is an effective medicinal compound against various cancers (Zhang et al., 2010). Stem blight was observed in two plant nurseries in Ya'an (102°44'E,30°42'N), Sichuan province in April 2021. The symptoms first appeared as round brown spots on the stem. As the disease progressed, the damaged area gradually expanded into an oval or irregular shape, which was dark brown. About 800 square meters of planting area were investigated and the disease incidence was up to approximately 64.8%. Twenty obviously symptomatic stems which exhibited the same symptoms as above were collected from 5 different trees in the nursery. To isolate the pathogen, the symptom margin was cut into small blocks (5 x 5 mm), and the blocks were surface sterilized in 75% ethanol for 90 s and 3% NaClO solution for 60 s . Finally incubated on Potato Dextrose Agar (PDA) at 28℃ for 5 days. Ten pure cultures were isolated by transferring hyphal and the three strains (HDS06, HDS07 and HDS08) were selected as representative isolates for further study. Initially, colonies on the PDA of three isolates were white and cotton-like, and then gradually turned gray-black from the center. After 21 days, conidia were produced and were smooth-walled, single-celled, black, oblate, or spherical, measuring 9.3 to 13.6 × 10.1 to 14.5 µm in size (n = 50). Conidia were present at the tip of conidiophores on hyaline vesicles. These morphological features were generally consistent with those of N. musae (Wang et al., 2017). To validate the identification, DNA were extracted from the three isolates, followed by the amplification of transcribed spacer region of rDNA (ITS), the translation elongation factor EF-1 (TEF-1), and the Beta-tubulin (TUB2) sequences with the respective primer pairs ITS1/ITS4 (White et al., 1990), EF-728F/EF-986R (Vieira et al., 2014) and Bt2a/Bt2b (O'Donnell et al., 1997) .The sequences were deposited in GenBank with the accession numbers ON965533, OP028064, OP028068, OP060349, OP060353, OP060354, OP060350, OP060351 and OP060352, respectively. Phylogenetic analysis of combined ITS, TUB2, and TEF genes using the Mrbayes inference method showed that the three isolates clustered with Nigrospora musae as a distinct clade (Fig. 2). Combine with morphological characteristics and phylogenetic analysis, three isolates were identified as N. musae. 30 2-year-old healthy potted plants of T. chinensis were used for pathogenicity test. 25 of these plants were inoculated by injecting 10 µL of the conidia suspension (1 × 106 conidia/mL) into stems and then wrap around the seal to moisturize. The remaining 5 plants were injected with the same amount of sterilized distilled water as a control. Finally, all potted plants were placed in a greenhouse at 25°C and 80% relative humidity. After 2 weeks, the inoculated stems developed lesions similar to those observed in the field, whereas controls were asymptomatic. N. musae was re-isolated from the infected stem and identified by both morphological characteristics and DNA sequence analysis. The experiments repeated three times showed similar results. As far as we know, this is the first report of N. musae causing T. chinensis stem blight in the world. The identification of N. musae could provide a certain theoretical basis for field management and further research of T. chinensis.

18.
Anal Chem ; 95(20): 7863-7871, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37159270

ABSTRACT

Understanding the metabolic disorders induced by nano- and microplastics in aquatic organisms at the molecular level could help us understand the potential toxicity of nano- and microplastics more thoroughly and provide a fundamental scientific basis for regulating the usage and management of plastic products. In this research, the effect of polypropylene nanoplastics (PP-NPs) and microplastics (PP-MPs) on metabolites in the tilapia liver was comprehensively investigated by internal extractive electrospray ionization mass spectrometry (iEESI-MS). A partial least-squares discriminant analysis (PLS-DA) and a one-component analysis of variance (ANOVA) were used for selecting 46 differential metabolites, including phospholipids, amino acids, peptides, carbohydrates, alkaloids, purines, pyrimidines, and nucleosides. Pathway enrichment analysis showed significant effects on glycerophospholipid metabolism, arginine and proline metabolism, and aminoacyl-tRNA biosynthesis after tilapia were exposed to PP-N/MPs. Dysregulation of these metabolites is mainly reflected in the possible induction of hepatitis, oxidative stress, and other symptoms. The application of iEESI-MS technology without sample pretreatment to the study of metabolic disorders in aquatic organisms under the interference of nano- and microplastics provides a promising analytical method for environmental toxicology research.


Subject(s)
Cichlids , Tilapia , Water Pollutants, Chemical , Animals , Microplastics , Spectrometry, Mass, Electrospray Ionization/methods , Plastics , Polypropylenes/toxicity , Liver , Aquatic Organisms , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
19.
BMC Public Health ; 23(1): 638, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013495

ABSTRACT

BACKGROUND: Paying attention to the health-related quality of life (HRQOL) of rural residents in poverty-stricken areas is an important part of China's poverty alleviation, but most studies on health-related quality of life have focused on rural residents, elderly individuals, and patients; evidence on the HRQOL of rural minority residents is limited. Thus, this study aimed to assess the HRQOL of rural Uighur residents in remote areas of Xinjiang, China, and determine its influencing factors to provide policy opinions for realizing a healthy China strategy. METHODS: A cross-sectional study was performed on 1019 Uighur residents in rural areas. The EQ-5D and self-administered questionnaires were used to assess HRQOL. We applied Tobit and binary logit regression models to analyse the factors influencing HRQOL among rural Uighur residents. RESULTS: The health utility index of the 1019 residents was - 0.197,1. The highest proportion of respondents reporting any problem was for mobility (57.5%), followed by usual activity (52.8%). Low levels of the five dimensions were related to age, smoking, sleep time, Daily intake of vegetables and fruit per capita. Gender, age, marital status, physical exercise, sleep duration, daily intake of cooking oil per capita, daily intake of fruit per capita, distance to the nearest medical institution, non-infectious chronic diseases (NCDs), self-rated health score, and participation in community activities were correlated with the health utility index of rural Uighur residents. CONCLUSIONS: HRQOL was lower for rural Uyghur residents than for the general population. Improving health behavioural lifestyles and reducing the incidence of poverty (return to poverty) due to illness are effective means of promoting the health in Uyghur residents. The region must fulfil the health poverty alleviation policy and focus on vulnerable groups and low-income residents to improve the health, ability, opportunity, and confidence of this population to live well.


Subject(s)
Ethnicity , Quality of Life , Humans , Aged , Cross-Sectional Studies , Ethnic and Racial Minorities , Minority Groups , Surveys and Questionnaires , Rural Population , China/epidemiology
20.
Heliyon ; 9(3): e13811, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36879965

ABSTRACT

Doxorubicin is the most effective anthracycline chemotherapy drug in the treatment of cancer, and it is an effective single agent in the treatment of non-small cell lung cancer (NSCLC). There is a lack of studies on the differentially expressed doxorubicin metabolism-related lncRNAs in NSCLC. In this study, we extracted related genes from the TCGA database and matched them with lncRNAs. Doxorubicin metabolism-related lncRNA-based gene signatures (DMLncSig) were gradually screened from univariate regression, LASSO regression, and multivariate regression analysis, and the risk score model was constructed. These DMLncSig were subjected to a GO/KEGG analysis. We then used the risk model to construct the TME model and analyze drug sensitivity. The IMvigor 210 immunotherapy model was cited for validation. Eventually, we performed tumor stemness index differences, survival, and clinical correlation analyses.

SELECTION OF CITATIONS
SEARCH DETAIL
...