Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 904: 166765, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37660816

ABSTRACT

Silver nanoparticles (AgNPs) are widely present in aquatic and soil environment, raising significant concerns about their impacts on creatures in ecosystem. While the toxicity of AgNPs on microorganisms has been reported, their effects on biogeochemical processes and specific functional microorganisms remain relatively unexplored. In this study, a 28-day microcosmic experiment was conducted to investigate the dose-dependent effects of AgNPs (10 mg and 100 mg Ag kg-1 soil) on nitrogen transformation and functional microorganisms in agricultural soils. The molecular mechanisms were uncovered by examining change in functional microorganisms and metabolic pathways. To enable comparison, the toxicity of positive control with an equivalent Ag+ dose from CH3COOAg was also included. The results indicated that both AgNPs and CH3COOAg enhanced nitrogen fixation and nitrification, corresponding to increased relative abundances of associated functional genes. However, they inhibited denitrification via downregulating nirS, nirK, and nosZ genes as well as reducing nitrate and nitrite reductase activities. In contrast to high dose of AgNPs, low levels increased bacterial diversity. AgNPs and CH3COOAg altered the activities of associated metabolic pathways, resulting in the enrichment of specific taxa that demonstrated tolerance to Ag. At genus level, AgNPs increased the relative abundances of nitrogen-fixing Microvirga and Bacillus by 0.02 %-629.39 % and 14.44 %-30.10 %, respectively, compared with control group (CK). The abundances of denitrifying bacteria, such as Rhodoplanes, Pseudomonas, and Micromonospora, decreased by 19.03 % to 32.55 %, 24.73 % to 50.05 %, and 15.66 % to 76.06 %, respectively, compared to CK. CH3COOAg reduced bacterial network complexity, diminished the symbiosis mode compared to AgNPs. The prediction of genes involved in metabolic pathways related to membrane transporter and cell motility showed sensitive to AgNPs exposure in the soil. Further studies involving metabolomics are necessary to reveal the essential effects of AgNPs and CH3COOAg on biogeochemical cycle of elements in agricultural soil.


Subject(s)
Metal Nanoparticles , Soil , Soil/chemistry , Silver/toxicity , Silver/analysis , Ecosystem , Nitrogen/analysis , Metal Nanoparticles/toxicity , Bacteria/metabolism , Soil Microbiology , Denitrification
2.
Sci Total Environ ; 905: 167291, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37742955

ABSTRACT

Nanoplastics (NPLs) and nanoAg (AgNPs) are emerging contaminants commonly detected in aquatic and terrestrial environments due to their widespread use in various domains. However, their uptake, translocation, and toxic effects on plants in cooccurrence environments remain largely unexplored. Therefore, a hydroponic experiment was conducted using 100 nm NPLs (1 mg/L and 10 mg/L), AgNPs (100 µg/L and 1000 µg/L) and saplings of willow (Salix matsudana 'J172') to investigate absorption, translocation and the physio-biochemical responses of the plants. The results indicated that NPLs and AgNPs were agglomerated with each other in solutions. NPLs not only penetrated the roots of the saplings but also translocated to the branches and leaves through xylem ducts. However, AgNPs was only detected in the roots, suggesting that the internalization of nanoparticles in plants depends on the properties and types of particles themselves. The combined exposure to NPLs and AgNPs selectively affected the absorption and distribution of K, Ca, Mg and Fe, resulting in inhibited saplings growth and photosynthesis. Furthermore, the presence of NPLs and AgNPs induced oxidative damage and stimulated the antioxidant stress system in the plants. This study provides novel insights into the internalization and ecotoxicological mechanisms of NPLs and AgNPs in woody vascular plants.


Subject(s)
Metal Nanoparticles , Salix , Antioxidants/metabolism , Oxidative Stress , Photosynthesis , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
3.
Sci Total Environ ; 893: 164855, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37331404

ABSTRACT

Microbial fuel cell-constructed wetlands (MFC-CWs) are attracted extensive attention due to their simultaneous removal performance during the co-occurrence of various pollutants in wastewater. This study explored the performance and mechanisms on the simultaneous removal of antibiotics and nitrogen from MFC-CWs which packed with coke (MFC-CW (C)) and quartz sand (MFC-CW (Q)) substrate. Results showed that removal of sulfamethoxazole (93.60 %), COD (77.94 %), NH4+-N (79.89 %), NO3-- N (82.67 %), and TN (70.29 %) significantly enhanced by MFC-CW (C) due to the enhancement of relative abundance of membrane transport, amino acid metabolism and carbohydrate metabolism pathways. The results indicated that coke substrate can generate more electric energy in MFC-CW. Firmicutes (18.56-30.82 %), Proteobacteria (23.33-45.76 %), and Bacteroidetes (17.1-27.85 %) were dominant phyla in the MFC-CWs. MFC-CW (C) posed significant effects on the microbial diversity and structure, which motivated the functional microbes involved in the transformation of antibiotics and nitrogen and bioelectricity generation. Given the overall performance of MFC-CW, packing with cost-effective substrate to electrode region of MFC-CWs was found to be an effective strategy for simultaneously removing antibiotics and nitrogen in the wastewater treatment.


Subject(s)
Bioelectric Energy Sources , Coke , Anti-Bacterial Agents , Wetlands , Nitrogen , Carbon , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...