Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731417

ABSTRACT

In recent years, renewable and sustainable triboelectric nanogenerators have attracted attention due to their high energy conversion rate, and enhancing their functionality further contributes to their applicability across various fields. A pH-sensitive triboelectric nanogenerator (pH-TENG) has been prepared by electrostatic spinning technology, with anthocyanin as the pH indicator and environmentally friendly polyvinyl alcohol (PVA) as the substrate. Among many friction-negative materials, the pH-TENG exhibits the best combination with fluorinated ethylene propylene (FEP) and yields an open-circuit voltage of 62 V, a short-circuit current of 370 nA, and a transferred charge of 21.8 nC. At a frequency of 3 Hz, it can charge a 4.7 µF capacitor to 2 V within 45 s, effectively powering a thermometer. Furthermore, the presence of anthocyanin does not affect the pH-TENG's power generation performance and enables the monitoring of a wide range of environmental pH changes, with an ΔE change of 28.8 ± 7.6. Therefore, pH-TENG prepared with environmentally friendly materials can bring new available materials to the biological and medical fields.

2.
Plant Sci ; 334: 111768, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37343602

ABSTRACT

Radish (Raphanus sativus L.) is an economically important and widely cultivated root vegetable crop. The coloration of the green skin and green flesh is an important trait influencing the nutrition and flavor quality in fruit radish. GOLDEN2-LIKEs (GLKs) play critically important roles in plastid development and chlorophyll biosynthesis in plants. However, the molecular mechanism underlying chlorophyll biosynthesis still remain elusive in green fruit radish taproot. Herein, the RsGLK2.1 gene exhibited higher expression level in taproot with a green skin (GS) and green flesh (GF) than that in taproot of the white or red radish genotypes. RsGLK2.1 is a nuclear transcription factor that has intrinsic transcriptional activation activity. Overexpression of RsGLK2.1 increased the total chlorophyll content of 20.68%-45.84% in radish leaves. Knockout of the RsGLK2.1 gene via CRISPR/Cas9 technology resulted in a significant decrease in the chlorophyll content. Overexpression of the RsGLK2.1 gene could restore the phenotype of the glk1glk2 mutant Arabidopsis. RsGLK2.1 was participated in regulating the chlorophyll biosynthesis by directly binding to the promoter of RsHEMA2 and activating its transcription. The interaction of RsNF-YA9a with RsGLK2.1 increased the transcriptional activity of the downstream gene RsHEMA2 under the light condition rather than the dark condition, indicating that both of them regulate the chlorophyll biosynthesis in a light-dependent manner of radish. Overall, these results provided insights into the molecular framework of the RsGLK2.1-RsNF-YA9a module, and could facilitate dissecting the regulatory mechanism underlying chlorophyll biosynthesis in green taproot of radish, and genetic improvement of quality traits in fruit radish breeding programs.


Subject(s)
Plant Proteins , Raphanus , Raphanus/physiology , Gene Expression Regulation, Plant , Plant Proteins/genetics
3.
Plant Physiol Biochem ; 199: 107710, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37087887

ABSTRACT

Radish is an economical cool-season root vegetable crop worldwide. Heat shock protein 70 (HSP70) plays indispensable roles in plant growth, development and abiotic stress responses. Nevertheless, little information is available regarding the identification and functional characterization of HSP70 gene family in radish. Herein, a total of 34 RsHSP70 genes were identified at the radish genome level, among which nine and 25 RsHSP70s were classified into the HSP110/SSE and DnaK subfamilies, respectively. RNA-seq analysis revealed that some RsHSP70 genes had differential expression profile in radish leaf, root, stamen and pistil. A range of RsHSP70 genes exhibited differential expression under several abiotic stresses such as heat, salt and heavy metals. Intriguingly, the expression of four RsHSP70 genes (RsHSP70-7, RsHSP70-12, RsHSP70-20 and RsHSP70-22) was dramatically up-regulated under heat stress (HS). RT-qPCR and transient LUC reporter assay indicated that both the expression and promoter activity of RsHSP70-20 was strongly induced by HS. Notably, overexpression of RsHSP70-20 significantly enhanced thermotolerance by decreasing reactive oxygen species and promoting proline accumulation in radish, whereas its knock-down plants exhibited increased thermosensitivity, indicating that RsHSP70-20 positively regulate HS response in radish. These results would provide valuable information to decipher the molecular basis of RsHSP70-mediated thermotolerance in radish.


Subject(s)
Raphanus , Raphanus/genetics , Raphanus/metabolism , Heat-Shock Response , Stress, Physiological/genetics , Gene Expression Regulation, Plant
4.
Plant Biotechnol J ; 21(5): 990-1004, 2023 05.
Article in English | MEDLINE | ID: mdl-36648398

ABSTRACT

High-quality radish (Raphanus sativus) genome represents a valuable resource for agronomical trait improvements and understanding genome evolution among Brassicaceae species. However, existing radish genome assembly remains fragmentary, which greatly hampered functional genomics research and genome-assisted breeding. Here, using a NAU-LB radish inbred line, we generated a reference genome of 476.32 Mb with a scaffold N50 of 56.88 Mb by incorporating Illumina, PacBio and BioNano optical mapping techniques. Utilizing Hi-C data, 448.12 Mb (94.08%) of the assembled sequences were anchored to nine radish chromosomes with 40 306 protein-coding genes annotated. In total, 249.14 Mb (52.31%) comprised the repetitive sequences, among which long terminal repeats (LTRs, 30.31%) were the most abundant class. Beyond confirming the whole-genome triplication (WGT) event in R. sativus lineage, we found several tandem arrayed genes were involved in stress response process, which may account for the distinctive phenotype of high disease resistance in R. sativus. By comparing against the existing Xin-li-mei radish genome, a total of 2 108 573 SNPs, 7740 large insertions, 7757 deletions and 84 inversions were identified. Interestingly, a 647-bp insertion in the promoter of RsVRN1 gene can be directly bound by the DOF transcription repressor RsCDF3, resulting into its low promoter activity and late-bolting phenotype of NAU-LB cultivar. Importantly, introgression of this 647-bp insertion allele, RsVRN1In-536 , into early-bolting genotype could contribute to delayed bolting time, indicating that it is a potential genetic resource for radish late-bolting breeding. Together, this genome resource provides valuable information to facilitate comparative genomic analysis and accelerate genome-guided breeding and improvement in radish.


Subject(s)
Raphanus , Raphanus/genetics , Genome, Plant/genetics , Plant Breeding , Genotype , Chromosomes
5.
J Exp Bot ; 74(1): 233-250, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36239471

ABSTRACT

CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides are a class of small molecules involved in plant growth and development. Although radish (Raphanus sativus) is an important root vegetable crop worldwide, the functions of CLE peptides in its taproot formation remain elusive. Here, a total of 48 RsCLE genes were identified from the radish genome. RNA in situ hybridization showed that RsCLE22a gene was highly expressed in the vascular cambium. Overexpression of RsCLE22a inhibited root growth by impairing stem cell proliferation in Arabidopsis, and radish plants with exogenous supplementation of RsCLE22 peptide (CLE22p) showed a similar phenotype. The vascular cambial activity was increased in RsCLE22a-silenced plants. Transcriptome analysis revealed that CLE22p altered the expression of several genes involved in meristem development and hormone signal transduction in radish. Immunolocalization results showed that CLE22p increased auxin accumulation in vascular cambium. Yeast one-hybrid and dual-luciferase assays showed that the WUSCHEL-RELATED HOMEOBOX 4 (RsWOX4) binds to RsCLE22a promoter and activates its transcription. The expression level of RsWOX4 was related to vascular cambial activity and was regulated by auxin. Furthermore, a RsCLE22a-RsWOX4 module is proposed to regulate taproot vascular cambium activity through an auxin signaling-related pathway in radish. These findings provide novel insights into the regulation of root growth in a horticultural crop.


Subject(s)
Arabidopsis , Raphanus , Raphanus/genetics , Raphanus/metabolism , Plant Roots/genetics , Indoleacetic Acids/metabolism , Gene Expression Profiling , Arabidopsis/genetics , Signal Transduction , Gene Expression Regulation, Plant
6.
Plant Physiol Biochem ; 192: 285-297, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36283201

ABSTRACT

Radish (Raphanus sativus L.) is an important worldwide root vegetable crop. Little information of the GRAS gene family was available in radish. Herein, a total of 51 GRAS family members were firstly identified from radish genome, and unevenly located onto nine radish chromosomes. Expression analysis of RsGRAS genes in taproot displayed that RsSCL15a and RsSHRc were highly expressed in the radish cambium, and its expression level was increased with the taproot thickening. Comparative transcriptome analysis revealed that the expression patterns of RsGRAS genes varied upon exposure to different abiotic stresses including heavy metals, salt and heat. The expression level of six RsGRAS genes including RsSHRc was increased under chilling stress in two radish genotypes with different cold tolerance. Further analysis indicated that RsGRAS genes could respond to cold stress rapidly and the expression of RsSHRc was up-regulated at different development stages (cortex splitting and thickening stages) under long-term cold treatment. Transient expression of RsSHRc gene in radish showed that RsSHRc possessed the reliable function of eliminating reactive oxygen species (ROS), inhibiting the formation of malondialdehyde (MDA) and promoting to accumulate proline under cold stress. Together, these findings provided insights into the function of RsGRAS genes in taproot development and chilling stress response in radish.

7.
Physiol Plant ; 174(5): e13789, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36183327

ABSTRACT

Homeodomain-leucine zipper (HD-Zip) transcription factors are involved in various biological processes of plant growth, development, and abiotic stress response. However, how they regulate heat stress (HS) response remains largely unclear in plants. In this study, a total of 83 RsHD-Zip genes were firstly identified from the genome of Raphanus sativus. RNA-Seq, RT-qPCR and promoter activity assays revealed that RsHDZ17 from HD-Zip Class I was highly expressed under heat, salt, and Cd stresses. RsHDZ17 is a nuclear protein with transcriptional activity at the C-terminus. Ectopic overexpression (OE) of RsHDZ17 in Arabidopsis thaliana enhanced the HS tolerance by improving the survival rate, photosynthesis capacity, and scavenging for reactive oxygen species (ROS). In addition, transient OE of RsHDZ17 in radish cotyledons impeded cell injury and augmented ROS scavenging under HS. Moreover, yeast one-hybrid, dual-luciferase assay, and electrophoretic mobility shift assay revealed that RsHDZ17 could bind to the promoter of HSFA1e. Collectively, these pieces of evidence demonstrate that RsHDZ17 could play a positive role in thermotolerance, partially through up-regulation of the expression of HSFA1e in plants. These results provide novel insights into the role of HD-Zips in radish and facilitate genetical engineering and development of heat-tolerant radish in breeding programs.


Subject(s)
Arabidopsis , Raphanus , Thermotolerance , Raphanus/genetics , Raphanus/metabolism , Leucine Zippers/genetics , Thermotolerance/genetics , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant/genetics , Cadmium/metabolism , Stress, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Materials (Basel) ; 15(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35806515

ABSTRACT

With the rapid development of flexible electronic devices, flexible lithium-ion batteries are widely considered due to their potential for high energy density and long life. Anode materials, as one of the key materials of lithium-ion batteries, need to have good flexibility, an excellent specific discharge capacity, and fast charge-discharge characteristics. Carbon fibers are feasible as candidate flexible anode materials. However, their low specific discharge capacity restricts their further application. Based on this, N-doped carbon nanofiber anodes with microporous, mesoporous, and macroporous structures are prepared in this paper. The hierarchical and heterogeneous porosity structure can increase the active sites of the anode material and facilitate the transport of ions, and N-doping can improve the conductivity. Moreover, the N-doped flexible carbon nanofiber with a porous structure can be directly used as the anode for lithium-ion batteries without adding an adhesive. It has a high first reversible capacity of 1108.9 mAh g-1, a stable cycle ability (954.3 mAh g-1 after 100 cycles), and excellent rate performance. This work provides a new strategy for the development of flexible anodes with high performance.

9.
Front Chem ; 10: 857036, 2022.
Article in English | MEDLINE | ID: mdl-35355786

ABSTRACT

In the critical situation of energy shortage and environmental problems, Si has been regarded as one of the most potential anode materials for next-generation lithium-ion batteries as a result of the relatively low delithiation potential and the eminent specific capacity. However, a Si anode is subjected to the huge volume expansion-contraction in the charging-discharging process, which can touch off pulverization of the bulk particles and worsens the cycle life. Herein, to reduce the volume change and improve the electrochemical performance, a novel Si@SiOx/C anode with a core-shell structure is designed by spray and pyrolysis methods. The SiOx/C shell not only ensures the structure stability and proves the high electrical conductivity but also prevents the penetration of electrolytes, so as to avoid the repetitive decomposition of electrolytes on the surface of Si particle. As expected, Si@SiOx/C anode maintains the excellent discharge capacity of 1,333 mAh g-1 after 100 cycles at a current density of 100 mA g-1. Even if the current density reaches up to 2,000 mA g-1, the capacity can still be maintained at 1,173 mAh g-1. This work paves an effective way to develop Si-based anodes for high-energy density lithium-ion batteries.

10.
Polymers (Basel) ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36616380

ABSTRACT

A waterborne epoxy coating with superior corrosion resistance was developed by using a novel amino-functionalized graphene oxide (GO) that was modified by 2,5-diaminobenzenesulfonic acid. A battery of characterization methods, such as Fourier transform infrared spectroscopy (FT-IR), Raman spectra, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), was used to prove that DGO was successfully prepared by grafting the amino of 2,5-diaminobenzenesulfonic on GO. The results indicated that the surface of DGO became rougher than GO, but a complete sheet structure was still maintained after modification; the optimal modified GO could be achieved when the mass ratio of 2,5-diaminobenzenesulfonic acid and GO was 5:1. The electrochemical impedance spectroscopy (EIS) tests indicated that the impedance at 0.01 Hz of a coating with 0.2 wt.% DGO still remained at a relatively high value after immersion for 48 h in 3.5 wt.% NaCl, which was about one order higher than a pure waterborne epoxy resin coating, and the corrosion current density decreased from 3.76 × 10-11 A/cm2 to 3.62 × 10-12 A/cm2. The dry adhesion and wet adhesion increased to 1.90 and 1.22 MPa, respectively, and the adhesion loss decreased from 53% to 36%. These interesting features could make waterborne epoxy coatings a promising anticorrosion coating for metal in long-term protection.

11.
Hortic Res ; 8(1): 124, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34059663

ABSTRACT

Melatonin (MT) is a tryptophan-derived natural product that plays a vital role in plant response to abiotic stresses, including heavy metals (HMs). However, it remains elusive how exogenous MT mediates lead (Pb) accumulation and detoxification at the methylation and transcriptional levels in radish. In this study, decreased Pb accumulation and increased antioxidant enzyme activity were detected under MT treatment in radish. Single-base resolution maps of DNA methylation under Pb stress (Pb200) and Pb plus MT treatment (Pb_50MT) were first generated. The genome-wide methylation level was increased under Pb stress, while an overall loss of DNA methylation was observed under MT treatment. The differentially methylated region (DMR)-associated genes between Pb_50MT and Pb200 were uniquely enriched in ion binding terms, including cation binding, iron ion binding, and transition metal ion binding. Hyper-DMRs between Pb200 and Control exhibited a decreasing trend of methylation under Pb_50MT treatment. A few critical upregulated antioxidant genes (e.g., RsAPX2, RsPOD52 and RsGST) exhibited decreased methylation levels under MT treatment, which enabled the radish plants to scavenge lead-induced reactive oxygen species (ROS) and decrease oxidative stress. Notably, several MT-induced HM transporter genes with low methylation (e.g., RsABCF5, RsYSL7 and RsHMT) and transcription factors (e.g., RsWRKY41 and RsMYB2) were involved in reducing Pb accumulation in radish roots. These findings could facilitate comprehensive elucidation of the molecular mechanism underlying MT-mediated Pb accumulation and detoxification in radish and other root vegetable crops.

12.
Hortic Res ; 7(1): 164, 2020.
Article in English | MEDLINE | ID: mdl-33042558

ABSTRACT

Radish (Raphanus sativus L.) taproot contains high concentrations of flavonoids, including anthocyanins (ATCs), in red-skinned genotypes. However, little information on the genetic regulation of ATC biosynthesis in radish is available. A genome-wide association study of radish red skin color was conducted using whole-genome sequencing data derived from 179 radish genotypes. The R2R3-MYB transcription factor production of anthocyanin pigment 2 (PAP2) gene was found in the region associated with a leading SNP located on chromosome 2. The amino acid sequence encoded by the RsPAP2 gene was different from those of the other published RsMYB genes responsible for the red skin color of radish. The overexpression of the RsPAP2 gene resulted in ATC accumulation in Arabidopsis and radish, which was accompanied by the upregulation of several ATC-related structural genes. RsPAP2 was found to bind the RsUFGT and RsTT8 promoters, as shown by a dual-luciferase reporter system and a yeast one-hybrid assay. The promoter activities of the RsANS, RsCHI, RsPAL, and RsUFGT genes could be strongly activated by coinfiltration with RsPAP2 and RsTT8. These findings showed the effectiveness of GWAS in identifying candidate genes in radish and demonstrated that RsPAP2 could (either directly or together with its cofactor RsTT8) regulate the transcript levels of ATC-related genes to promote ATC biosynthesis, facilitating the genetic enhancement of ATC contents and other related traits in radish.

13.
BMC Plant Biol ; 20(1): 373, 2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32770962

ABSTRACT

BACKGROUND: Taproot is the main edible organ and ultimately determines radish yield and quality. However, the precise molecular mechanism underlying taproot thickening awaits further investigation in radish. Here, RNA-seq was performed to identify critical genes involved in radish taproot thickening from three advanced inbred lines with different root size. RESULTS: A total of 2606 differentially expressed genes (DEGs) were shared between 'NAU-DY' (large acicular) and 'NAU-YB' (medium obovate), which were significantly enriched in 'phenylpropanoid biosynthesis', 'glucosinolate biosynthesis', and 'starch and sucrose metabolism' pathway. Meanwhile, a total of 16 differentially expressed miRNAs (DEMs) were shared between 'NAU-DY' and 'NAU-YH' (small circular), whereas 12 miRNAs exhibited specific differential expression in 'NAU-DY'. Association analysis indicated that miR393a-bHLH77, miR167c-ARF8, and miR5658-APL might be key factors to biological phenomenon of taproot type variation, and a putative regulatory model of taproot thickening and development was proposed. Furthermore, several critical genes including SUS1, EXPB3, and CDC5 were characterized and profiled by RT-qPCR analysis. CONCLUSION: This integrated study on the transcriptional and post-transcriptional profiles could provide new insights into comprehensive understanding of the molecular regulatory mechanism underlying taproot thickening in root vegetable crops.


Subject(s)
Plant Roots/growth & development , Raphanus/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Library , Genes, Plant , MicroRNAs/metabolism , Plant Roots/genetics , RNA, Messenger/metabolism , RNA, Plant/metabolism , RNA-Seq , Raphanus/genetics , Real-Time Polymerase Chain Reaction
14.
J Pineal Res ; 69(1): e12659, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32323337

ABSTRACT

Cadmium (Cd) is an environmental pollutant that causes health hazard to living organisms. Melatonin (MT) has emerged as a ubiquitous pleiotropic molecule capable of coordinating heavy metal (HM) stresses in plants. However, it remains unclear how melatonin mediates Cd homeostasis and detoxification at transcriptional and/or post-transcriptional levels in radish. Herein, the activities of five key antioxidant enzymes were increased, while root and shoot Cd contents were dramatically decreased by melatonin. A combined small RNA and transcriptome sequencing analysis showed that 14 differentially expressed microRNAs (DEMs) and 966 differentially expressed genes (DEGs) were shared between the Cd and Cd + MT conditions. In all, 23 and ten correlated miRNA-DEG pairs were identified in Con vs. Cd and Con vs. Cd + MT comparisons, respectively. Several DEGs encoding yellow stripe 1-like (YSL), heavy metal ATPases (HMA), and ATP-binding cassette (ABC) transporters were involved in Cd transportation and sequestration in radish. Root exposure to Cd2+ induced several specific signaling molecules, which consequently trigger some HM chelators, transporters, and antioxidants to achieve reactive oxygen species (ROS) scavenging and detoxification and eliminate Cd toxicity in radish plants. Notably, transgenic analysis revealed that overexpression of the RsMT1 (Metallothionein 1) gene could enhance Cd tolerance of tobacco plants, indicating that the exogenous melatonin confers Cd tolerance, which might be attributable to melatonin-mediated upregulation of RsMT1 gene in radish plants. These results could contribute to dissecting the molecular basis governing melatonin-mediated Cd stress response in plants and pave the way for high-efficient genetically engineering low-Cd-content cultivars in radish breeding programs.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cadmium/metabolism , Chelating Agents/metabolism , Gene Expression Regulation, Plant , Melatonin/metabolism , Plant Proteins/metabolism , Raphanus/metabolism , ATP-Binding Cassette Transporters/genetics , Melatonin/genetics , Plant Proteins/genetics , Raphanus/genetics
15.
Materials (Basel) ; 13(5)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182793

ABSTRACT

Sulfides existing in many high-temperature gas mixtures have a negative effect on various industrial applications. Ce-based adsorbents are becoming a hotspot in the high-temperature desulfurization process owing to their excellent thermal stability at high temperatures and regeneration capacity. In this study, we investigate the regeneration path of samarium-doped cerium (SDC) sorbent at high temperature. The SDC adsorbent showed a good sulfur removal ability and excellent regeneration capacity. Ce2O2S and Ce(SO4)2 are observed in the used adsorbent, and Ce2O2S is the main sulfur-containing species. The regeneration path of the Ce2O2S is the key to the regeneration mechanism of the adsorbent. There are two regeneration paths for the Ce2O2S at high temperature in O2/N2 gas mixture. In air stream, the Ce2O2S is oxidized to Ce2O2SO4 and then decomposes into CeO2 and SO2. In a 2% O2/N2 gas condition, the Ce2O2S directly generates CeO2 and elemental sulfur with O2 assistance.

16.
Plant Biotechnol J ; 18(1): 274-286, 2020 01.
Article in English | MEDLINE | ID: mdl-31218798

ABSTRACT

High-density genetic map is a valuable tool for exploring novel genomic information, quantitative trait locus (QTL) mapping and gene discovery of economically agronomic traits in plant species. However, high-resolution genetic map applied to tag QTLs associated with important traits and to investigate genomic features underlying recombination landscape in radish (Raphanus sativus) remains largely unexplored. In this study, an ultra-high-density genetic map with 378 738 SNPs covering 1306.8 cM in nine radish linkage groups (LGs) was developed by a whole-genome sequencing-based approach. A total of 18 QTLs for 11 horticulture traits were detected. The map-based cloning data indicated that the R2R3-MYB transcription factor RsMYB90 was a crucial candidate gene determining the taproot skin colour. Comparative genomics analysis among radish, Brassica rapa and B. oleracea genome revealed several genomic rearrangements existed in the radish genome. The highly uneven distribution of recombination was observed across the nine radish chromosomes. Totally, 504 recombination hot regions (RHRs) were enriched near gene promoters and terminators. The recombination rate in RHRs was positively correlated with the density of SNPs and gene, and GC content, respectively. Functional annotation indicated that genes within RHRs were mainly involved in metabolic process and binding. Three QTLs for three traits were found in the RHRs. The results provide novel insights into the radish genome evolution and recombination landscape, and facilitate the development of effective strategies for molecular breeding by targeting and dissecting important traits in radish.


Subject(s)
Chromosome Mapping , Raphanus/genetics , Recombination, Genetic , Synteny , Pigmentation/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci
17.
Materials (Basel) ; 12(24)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861076

ABSTRACT

This paper addresses the effects of Ce-rich mischmetal on the microstructure evolution of a 5182 aluminum alloy during annealing and rolling processes. The Ce-rich mischmetal was added to an as-cast 5182 aluminum alloy in an induction furnace, and this was followed by homogenized annealing at 450 °C for 24 h and a rolling operation. The microstructure evolution and mechanical properties' analysis of the 5182 Al alloy were characterized. The results show that the Ce-rich mischmetal could modify the microstructure, refine the α-Al grains, break the network distribution of Mg2Si phases, and prevent Cr and Si atoms from diffusing into the Al6(Mn, Fe) phase in the as-cast 5182 Al alloys. Ce-rich mischmetal elements were also found to refine the Al6(Mn, Fe) phase after cold rolling. Then, the refined Al6(Mn, Fe) particles inhibited the growth of recrystallization grains to refine them from 10.01 to 7.18 µm after cold rolling. Consequently, the tensile strength of the cold-rolled 5182 Al alloy increased from 414.65 to 454.34 MPa through cell-size strengthening, dislocation density strengthening, and particle strengthening. The tensile strength of the recrystallization annealed 5182 Al alloy was increased from 322.16 to 342.73 MPa through grain refinement strengthening, and this alloy was more stable after the recrystallization annealing temperature.

18.
Gene ; 718: 144048, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31421189

ABSTRACT

Main conclusion Among 247 RsAP2/ERF identified, the majority of the 21 representatives were preferably expressed under drought and heat while suppressed under heavy metals, indicating their potential roles in abiotic stress responses and tolerance. APETALA2/Ethylene-Responsive factor (AP2/ERF) transcription factor (TF) is one of the largest gene families in plants that play a fundamental role in growth and development as well as biotic and/or abiotic stresses responses. Although AP2/ERFs have been extensively characterized in many plant species, little is known about this family in radish, which is an important root vegetable with various medicinal properties. The available genome provides valuable opportunity to identify and characterize the global information on AP2/ERF TFs in radish. In this study, a total of 247 ERF family genes were identified from the radish genome, and sequence alignment and phylogenetic analyses classified the AP2/ERF superfamily into five groups (AP2, ERF, DREB, RAV and soloist). Motif analysis showed that other than AP2/ERF domains, other conserved regions were selectively distributed among different clades in the phylogenetic tree. Chromosome location analysis showed that tandem duplication may result in the expansion of RsAP2/ERF gene family. The RT-qPCR analysis confirmed that a proportion of AP2/ERF genes were preferably expressed under drought and heat stresses, whereas they were suppressed under the ABA and heavy metal stresses. These results provided valuable information for further evolutionary and functional characterization of RsAP2/ERF genes, and contributed to genetic improvement of stress tolerances in radish and other root vegetable crops.


Subject(s)
Evolution, Molecular , Homeodomain Proteins , Metals, Heavy/toxicity , Multigene Family , Nuclear Proteins , Phylogeny , Plant Proteins , Raphanus , Stress, Physiological/drug effects , Genome-Wide Association Study , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Raphanus/genetics , Raphanus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...