Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
World J Gastroenterol ; 15(45): 5674-84, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-19960564

ABSTRACT

AIM: To investigate whether nicotinamide overload plays a role in type 2 diabetes. METHODS: Nicotinamide metabolic patterns of 14 diabetic and 14 non-diabetic subjects were compared using HPLC. Cumulative effects of nicotinamide and N(1)-methylnicotinamide on glucose metabolism, plasma H(2)O(2) levels and tissue nicotinamide adenine dinucleotide (NAD) contents of adult Sprague-Dawley rats were observed. The role of human sweat glands and rat skin in nicotinamide metabolism was investigated using sauna and burn injury, respectively. RESULTS: Diabetic subjects had significantly higher plasma N(1)-methylnicotinamide levels 5 h after a 100-mg nicotinamide load than the non-diabetic subjects (0.89 +/- 0.13 micromol/L vs 0.6 +/- 0.13 micromol/L, P < 0.001). Cumulative doses of nicotinamide (2 g/kg) significantly increased rat plasma N(1)-methylnicotinamide concentrations associated with severe insulin resistance, which was mimicked by N(1)-methylnicotinamide. Moreover, cumulative exposure to N(1)-methylnicotinamide (2 g/kg) markedly reduced rat muscle and liver NAD contents and erythrocyte NAD/NADH ratio, and increased plasma H(2)O(2) levels. Decrease in NAD/NADH ratio and increase in H(2)O(2) generation were also observed in human erythrocytes after exposure to N(1)-methylnicotinamide in vitro. Sweating eliminated excessive nicotinamide (5.3-fold increase in sweat nicotinamide concentration 1 h after a 100-mg nicotinamide load). Skin damage or aldehyde oxidase inhibition with tamoxifen or olanzapine, both being notorious for impairing glucose tolerance, delayed N(1)-methylnicotinamide clearance. CONCLUSION: These findings suggest that nicotinamide overload, which induced an increase in plasma N(1)-methylnicotinamide, associated with oxidative stress and insulin resistance, plays a role in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Niacinamide/analogs & derivatives , Niacinamide/adverse effects , Adult , Aged , Aldehyde Oxidase/antagonists & inhibitors , Aldehyde Oxidase/metabolism , Animals , Blood Glucose/metabolism , Erythrocytes/metabolism , Female , Humans , Hydrogen Peroxide/metabolism , Insulin/metabolism , Male , Middle Aged , NAD/metabolism , Niacinamide/administration & dosage , Niacinamide/metabolism , Oxidants/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Risk Factors , Sweat/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...