Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Am J Transl Res ; 11(3): 1800-1809, 2019.
Article in English | MEDLINE | ID: mdl-30972203

ABSTRACT

This study examined the relationship between the expression of Ras guanyl nucleotide-releasing protein 3 (RasGRP3) and disease activity in systemic lupus erythematosus (SLE) and explored the possible mechanisms in MRL/lpr mice. We detected the expression of RasGRP3 in peripheral blood mononuclear cells (PBMCs) of SLE patients (n=26) and healthy controls (n=20) by employing RT-PCR and studied the association between the mRNA expression of RasGRP3 in PBMCs and the clinical findings. We also measured the protein level of RasGRP3 in PBMCs by Western blotting (n=10). In addition, we isolated the B cells from PBMCs with magnetic bead separation and determined the RasGRP3 expression by RT-PCR (n=10). Furthermore, we extracted spleen B cells from MRL/lpr mice and knocked down RasGRP3 by siRNA transfection to study the role of RasGRP3 in the pathway of B cell receptor (BCR) activation and the production of pro-inflammatory cytokines. Compared with healthy volunteers, the expression of RasGRP3 was significantly elevated in PBMCs and purified B cells from SLE patients. The mRNA expression of RasGRP3 in PBMCs was positively correlated with SLE disease activity index (SLEDAI). Moreover, silencing RasGRP3 could inhibit Akt and Erk1/2 activation in marginal zone (MZ) and follicular (FO) B cells of MRL/lpr mice. Additionally, the production of pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), was decreased whereas activation of caspase-3 cleavage was induced in vitro. In conclusion, over-expression of RasGRP3 is associated with disease activity and might be involved in the pathogenesis of SLE.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(2 Pt 2): 026123, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15783394

ABSTRACT

Based on the Nagel-Schreckenberg (NaSch) model of traffic flow, we study the effects of the orders of the evolutive rule on traffic flow. It has been found from simulation that the cellular automaton (CA) traffic model is very sensitively dependent on the orders of the evolutive rule. Changing the evolutive steps of the NaSch model will result in two modified models, called the SDNaSch model and the noise-first model, with different fundamental diagrams and jamming states. We analyze the mechanism of these two different traffic models and corresponding traffic behaviors in detail and compare the two modified model with the NaSch model. It is concluded that the order arrangement of the stochastic delay and deterministic deceleration indeed has remarkable effects on traffic flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...