Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.313
Filter
1.
Small ; : e2403079, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829022

ABSTRACT

Phosphate-based electrolyte propels the advanced battery system with high safety. Unfortunately, restricted by poor electrochemical stability, it is difficult to be compatible with advanced lithium metal anodes and Ni-rich cathodes. To alleviate these issues, the study has developed a phosphate-based localized high-concentration electrolyte with a nitrate-driven solvation structure, and the nitrate-derived N-rich inorganic interface shows excellent performance in stabilizing the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface and modulating the lithium deposition morphology on the anode. The results show that the Li|| NCM811 cell has exceptional long-cycle stability of >80% capacity retention after 800 cycles at 4.3 V, 1 C. A more prominent capacity retention rate of 93.3% after 200 cycles can be reached with the high voltage of 4.5 V. While being compatible with the phosphate-based electrolyte with good flame retardancy and the good electrochemical stability of Ni-rich lithium metal battery (LMBs) systems, the present work expands the construction of anion-rich solvation structures, which is expected to promote the development of the high-performance LMBs with safety.

2.
Heliyon ; 10(10): e31621, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831842

ABSTRACT

Activated hepatic stellate cells (HSCs) have been widely recognized as a primary source of pathological myofibroblasts, leading to the accumulation of extracellular matrix and liver fibrosis. CD47, a transmembrane glycoprotein expressed on the surface of various cell types, has been implicated in non-alcoholic fatty liver disease. However, the precise role of CD47 in HSC activation and the underlying regulatory mechanisms governing CD47 expression remain poorly understood. In this study, we employed single-cell RNA sequencing analysis to investigate CD47 expression in HSCs from mice subjected to a high-fat diet. CD47 silencing in HSCs markedly inhibited the expression of fibrotic genes and promoted apoptosis. Mechanistically, we found that Yes-associated protein (YAP) collaborates with TEAD4 to augment the transcriptional activation of CD47 by binding to its promoter region. Notably, disruption of the interaction between YAP and TEAD4 caused a substantial decrease in CD47 expression in HSCs and reduced the development of high-fat diet-induced liver fibrosis. Our findings highlight CD47 as a critical transcriptional target of YAP in promoting HSC activation in response to a high-fat diet. Targeting the YAP/TEAD4/CD47 signaling axis may hold promise as a therapeutic strategy for liver fibrosis.

3.
Nanoscale ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847559

ABSTRACT

Multicolor fluorescent carbon dots (CDs) have received extensive attention due to their excellent fluorescence tunable performance. In this study, multicolor CDs with color tunable and high fluorescence quantum yields (QYs) were successfully prepared under the same conditions by a one-step solvothermal method using 2-aminoterephthalic acid (ATA) and Nile Blue A (NBA) as reaction reagents, achieving a wide color field coverage. Detailed studies on the relevant mechanisms have been carried out for blue, green and red CDs, indicating that the regulating mechanism of multicolor luminescence is determined by the size of the sp2 conjugated domains, which is due to the increase of particle size that causes an increase in the size of the sp2 conjugated domains, resulting in the narrowing of the band gap and the red-shift of the emission wavelength. It was found that the CDs have the advantages of simple preparation, high photostability and high quantum yield. They were used as fluorescent ink and mixed with polyvinyl alcohol (PVA) to form CD/PVA composites, which were successfully applied in the field of information encryption and anti-counterfeiting. This work provides a new strategy for the synthesis of panchromatic tunable fluorescent CDs and their application in the field of information encryption and anti-counterfeiting.

5.
Cancer Lett ; 593: 216956, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38735381

ABSTRACT

Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.

6.
Sci Rep ; 14(1): 11213, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755185

ABSTRACT

The preoperative distinguishment of lymph nodes (LN) with metastasis plays a pivotal role in guiding the surgical extension for gastric cancer (GC). We aim to identify the preparative risk factors for LN metastasis in GC patients. We retrospectively reviewed 424 patients who underwent radical GC resection in our medical center between Jan 2011 and Dec 2018. Multivariate logistic regression was employed to identify risk factors for LN metastasis, while multivariate COX regression was utilized to evaluate prognostic factors. The median overall survival of patients with or without LN metastases was 31 and 58 months, respectively. In multivariate analysis, lower albumin (OR = 0.512; P = 0.004) and prealbumin (OR = 0.367, P = 0.001) and higher CEA (OR = 3.178, P < 0.001), CA199 (OR = 2.278, P = 0.002) and platelets (OR = 1.697, P = 0.017) were found to be significantly associated with LN metastasis. In survival analysis, older age (HR = 1.712), larger tumors (HR = 1.082), higher D-dimer (HR = 1.561) and CA199 (HR = 1.553), advanced staging (stage II, HR = 3.446; stage III-IV, HR = 11.089), lower prealbumin levels (lower level for reference, HR = 0.63), and absence of adjuvant chemotherapy (HR = 0.396) was discovered to be associated with poorer overall survival (all P < 0.05). In conclusion, our results demonstrated that preoperative prealbumin-bound tumor markers can effectively predict LN metastasis. Additionally, prealbumin was found to possess prognostic value as well.


Subject(s)
Lymphatic Metastasis , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Stomach Neoplasms/surgery , Male , Female , Middle Aged , Prognosis , Aged , Retrospective Studies , Lymph Nodes/pathology , Risk Factors , Neoplasm Staging , Adult , Biomarkers, Tumor/metabolism , Preoperative Period , Aged, 80 and over
7.
Adv Biol (Weinh) ; : e2300610, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773915

ABSTRACT

Lung squamous cell carcinoma (LUSC) is the second most common type of non-small cell lung cancer. Toosendanin can target critical cancer cell survival and proliferation. However, the function of toosendanin in LUSC is limited. Cancer cell proliferative capacity is detected using cell morphology, colony formation, and flow cytometry. The invasiveness of the cells is detected by a Transwell assay, western blotting, and RT-qPCR. Nude mice are injected with H226 (1×106) and received an intraperitoneal injection of toosendanin every 2 days for 21 days. RNA sequence transcriptome analysis is performed on toosendanin-treated cells to identify target genes and signaling pathways. With increasing concentrations of toosendanin, the rate of cell proliferation decreases and apoptotic cells increases. The number of migrated cells significantly reduces and epithelial-mesenchymal transition is reversed. Injection of toosendanin in nude mice leads to a reduction in tumor volume, weight, and the number of metastatic tumors. Furthermore, KEGG shows that genes related to the AMPK pathway are highly enriched. BNIP3 is the most differentially expressed gene, and its expression along with phosphorylated-AMPK significantly increases in toosendanin-treated cells. Toosendanin exerts anticancer effects, induces apoptosis in LUSC cells, and inhibits tumor progression via the BNIP3/AMPK signaling pathway.

8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2364-2375, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812137

ABSTRACT

To explore the active substances exerting anti-tumour effect in lemon essential oil and the molecular mechanism inhibiting the proliferation of head and neck cancer cells SCC15 and CAL33, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay(MTT) was utilized to identify the active component inhibiting the proliferation of head and neck cancer cells, namely citral. The IC_(50) of citral inhibiting the proliferation of head and neck cancer cells and normal cells were also determined. In addition, a 5-ethynyl-2'-deoxyuridine(EdU) staining assay was used to detect the effect of citral on the proliferation rate of head and neck cancer cells, and a colony formation assay was used to detect the effect of citral on tumor sphere formation of head and neck cancer cells in vitro. The cell cycle arrest and apoptosis induction of head and neck cancer cells by citral were evaluated by flow cytometry, and Western blot was used to detect the effect of citral on the expression levels of cell cycle-and apoptosis-related proteins in head and neck cancer cells. The findings indicated that citral could effectively inhibit the proliferation and growth of head and neck cancer cells, with anti-tumor activity, and its half inhibitory concentrations for CAL33 and SCC15 were 54.78 and 25.23 µg·mL~(-1), respectively. Furthermore, citral arrested cell cycle at G_2/M phase by down-regulating cell cycle-related proteins such as S-phase kinase associated protein 2(SKP2), C-MYC, cyclin dependent kinase 1(CDK1), and cyclin B. Moreover, citral increased the cysteinyl aspartate-specific proteinase-3(caspase-3), cysteinyl aspartate-specific proteinase-9(caspase-9), and cleaved poly ADP-ribose polymerase(PARP). It up-regulated the level of autophagy-related proteins including microtubule associated protein 1 light chain 3B(LC3B), sequestosome 1(P62/SQSTM1), autophagy effector protein Beclin1(Beclin1), and lysosome-associate membrane protein 1(LAMP1), suggesting that citral could effectively trigger cell apoptosis and cell autophagy in head and neck cancer cells. Furthermore, the dual-tagged plasmid system mCherry-GFP-LC3 was used, and it was found that citral impeded the fusion of autophagosomes and lysosomes, leading to autophagic flux blockage. Collectively, our findings reveal that the main active anti-proliferation component of lemon essential oil is citral, and this component has a significant inhibitory effect on head and neck cancer cells. Its underlying molecular mechanism is that citral induces apoptosis and autophagy by cell cycle arrest and ultimately inhibits cell proliferation.


Subject(s)
Acyclic Monoterpenes , Apoptosis , Cell Proliferation , Head and Neck Neoplasms , Monoterpenes , Oils, Volatile , Humans , Cell Proliferation/drug effects , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/genetics , Apoptosis/drug effects , Cell Line, Tumor , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemistry , Cell Cycle Checkpoints/drug effects , Citrus/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
9.
Clin Transl Med ; 14(5): e1687, 2024 May.
Article in English | MEDLINE | ID: mdl-38738791

ABSTRACT

OBJECTIVE: It has been observed that the prognosis of patients with HER2-positive metastatic breast cancer has improved significantly with HER2-targeted agents. However, there is still a lack of evidence regarding first-line anti-HER2 treatment options for patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer. Besides, there are no reliable markers that can predict the efficacy of anti-HER2 treatment in these patients. METHODS: Patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer were enrolled. Pyrotinib plus albumin-bound paclitaxel were used as first-line treatment. The primary endpoint was the objective response rate (ORR). The safety profile was also assessed. In order to explore predictive biomarkers using Olink technology, blood samples were collected dynamically. RESULTS: From December 2019 to August 2023, the first stage of the study involved 27 eligible patients. It has not yet reached the median PFS despite the median follow-up being 17.8 months. Efficacy evaluation showed that the ORR was 92.6%, and the DCR was 100%. Adverse events of grade 3 or higher included diarrhoea (29.6%), leukopenia (11.1%), neutropenia (25.9%), oral mucositis (3.7%), and hand-foot syndrome (3.7%). Toll-like receptor 3 (TLR3) and Proto-oncogene tyrosine-protein kinase receptor (RET) were proteins with significant relevance to PFS in these patients. CONCLUSIONS: This study demonstrates that pyrotinib plus albumin-bound paclitaxel as a first-line treatment regimen shows good efficacy and manageable safety for patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer. Besides, a significant association was identified between the expression levels of TLR3 and RET and the PFS in patients.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Middle Aged , Adult , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Prospective Studies , Aged , Receptor, ErbB-2/metabolism , Albumin-Bound Paclitaxel/therapeutic use , Albumin-Bound Paclitaxel/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Acrylamides/therapeutic use , Neoadjuvant Therapy/methods , Proto-Oncogene Mas , Sulfinic Acids/therapeutic use , Sulfinic Acids/pharmacology , Aminoquinolines/therapeutic use , Aminoquinolines/pharmacology , Treatment Outcome
10.
Environ Sci Technol ; 58(20): 8955-8965, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38718175

ABSTRACT

The development of Fe-based catalysts for the selective catalytic reduction of NOx by NH3 (NH3-SCR of NOx) has garnered significant attention due to their exceptional SO2 resistance. However, the influence of different sulfur-containing species (e.g., ferric sulfates and ammonium sulfates) on the NH3-SCR activity of Fe-based catalysts as well as its dependence on exposed crystal facets of Fe2O3 has not been revealed. This work disclosed that nanorod-like α-Fe2O3 (Fe2O3-NR) predominantly exposing (110) facet performed better than nanosheet-like α-Fe2O3 (Fe2O3-NS) predominantly exposing (001) facet in NH3-SCR reaction, due to the advantages of Fe2O3-NR in redox properties and surface acidity. Furthermore, the results of the SO2/H2O resistance test at a critical temperature of 250 °C, catalytic performance evaluations on Fe2O3-NR and Fe2O3-NS sulfated by SO2 + O2 or deposited with NH4HSO4 (ABS), and systematic characterization revealed that the reactivity of ammonium sulfates on Fe2O3 catalysts to NO(+O2) contributed to their improved catalytic performance, while ferric sulfates showed enhancing and inhibiting effects on NH3-SCR activity on Fe2O3-NR and Fe2O3-NS, respectively; despite this, Fe2O3-NR showed higher affinity for SO2 + O2. This work set a milestone in understanding the NH3-SCR reaction on Fe2O3 catalysts in the presence of SO2 from the aspect of crystal facet engineering.


Subject(s)
Ammonia , Catalysis , Ammonia/chemistry , Sulfur Dioxide/chemistry , Ferric Compounds/chemistry , Oxidation-Reduction
11.
Org Biomol Chem ; 22(20): 4036-4040, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38698770

ABSTRACT

An unprecedented Ir(III)-catalyzed C-H activation/amination/annulation of 2-phenyloxazoles with anthranils for the highly selective preparation of acridone derivatives in one-pot under controlled conditions is reported. This protocol is characterized by atom economy and high regioselectivity. A wide range of anthranils with 2-phenyloxazoles were well tolerated and afforded the desired products in moderate to good yields, in which the anthranil serves as a convenient amination reagent.

12.
Cureus ; 16(4): e58910, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38800207

ABSTRACT

This case reports a 35-year-old man who presented with a painful erythematous nodule on his right posterior calf. He first noticed this nodule several years ago and it often bled upon contact with clothing. An excisional biopsy of the skin lesion revealed two distinct populations of cells. One population of epithelioid cells stained positive for Mart-1, HMB45, and SOX-10, confirming the diagnosis of malignant melanoma. The second population of cells stained positive for desmin and calponin, confirming the diagnosis of sarcoma with muscular differentiation. Subsequently, these unusual findings led to the diagnosis of a collision tumor comprising malignant melanoma and rhabdomyosarcoma. Follow-up PET/CT and brain MRI revealed no metastasis from the primary skin lesion. This case highlights a rare combination of cell types found within a collision tumor in addition to providing details on how to diagnose this skin lesion.

13.
Small ; : e2402123, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804876

ABSTRACT

The localized high-concentration electrolyte (LHCE) propels the advanced high-voltage battery system. Sulfone-based LHCE is a transformative direction compatible with high energy density and high safety. In this work, the application of lithium bis(trifluoromethanesulphonyl)imide and lithium bis(fluorosulfonyl)imide (LiFSI) in the LHCE system constructed from sulfolane and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) is investigated. The addition of diluent causes an increase of contact ion pairs and ionic aggregates in the solvation cluster and an acceptable quantity of free solvent molecules. A small amount of LiFSI as an additive can synergistically decompose with TTE on the cathode and participate in the construction of both electrode interfaces. The designed electrolyte helps the Ni-rich system to cycle firmly at a high voltage of 4.5 V. Even with high mass load and lean electrolyte, it can keep a reversible specific capacity of 91.5% after 50 cycles. The constructed sulfone-based electrolyte system exhibits excellent thermal stability far beyond the commercial electrolytes. Further exploration of in-situ gelation has led to a quick conversion of the designed liquid electrolyte to the gel state, accompanied by preserved stability, which provides a direction for the synergistic development of LHCE with gel electrolytes.

14.
Org Lett ; 26(22): 4616-4620, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38805677

ABSTRACT

A series of structurally chiral cyclic imines efficiently yields chiral nitrones and nitroalkanes. This is the first report of the synthesis of nitro groups by C═N bond cleavage of imines through a nitrone intermediate.

15.
J Inflamm Res ; 17: 2309-2326, 2024.
Article in English | MEDLINE | ID: mdl-38638161

ABSTRACT

Background: Allergic rhinitis (AR) is globally recognized as a considerable threat to human health with a rising prevalence and a substantial medical and socioeconomic burden. Numerous studies have emphasized the significance of long noncoding RNAs (lncRNAs) in allergic responses. Hence, this research dealt with exploring the involvement of the lncRNA LINC00998 in the mechanism of AR. Methods: LINC00998 expression was assessed by qRT-PCR in peripheral blood mononuclear cells acquired from individuals with AR. Additionally, the potential relationship between LINC00998 and macrophage polarization was observed in vitro. Then we constructed AR mice model and macrophage polarization models using THP-1 cells as well as primary human macrophages to verify the M2 shift in AR and the low expression level of LINC00998 in M2 macrophages. We used gain- and loss-of-function experiments to explore the modification of LINC00998 in macrophage polarization. Furthermore, we explored the underlying mechanism of LINC00998 mediates through qRT-PCR, flow cytometry, and Western blot. Results: The analysis revealed a significant decrease in LINC00998 expression in the samples obtained from patients with AR. LINC00998 is markedly increased in M1 macrophages whereas decreased in M2 macrophages in vitro. Furthermore, suppression of LINC00998 caused a remarkable enhancement in M2 polarization, whereas its overexpression led to its attenuation. Knockdown of LINC00998 led to a remarkable downregulation of BOB.1 mRNA and protein, while overexpression of LINC00998 upregulated their expression. Moreover, it was found that BOB.1 modulated macrophage polarization through the PU.1/IL-1ß axis. Meanwhile, the modulation of LINC00098 overexpression on macrophage polarization and PU.1/ IL-1ß can be reversed by BOB.1 siRNA. Conclusion: This research revealed the lncRNA LINC00998 altered M2 macrophage polarization by regulating the BOB.1/PU.1/IL-1ß axis, which open up new avenues for studying the pathogenesis of AR.

16.
Mol Neurobiol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664301

ABSTRACT

Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues. The results showed that the transcriptional and expressional levels of NLRP3, caspase-1, and apoptosis-associated speck-like protein (ASC) in the brains of scrapie-infected rodents were significantly increased at terminal stage. The increased NLPR3 overlapped morphologically well with the proliferated GFAP-positive astrocytes, but little with microglia and neurons. Using the brain samples collected at the different time-points after infection, we found the NLRP3 signals increased in a time-dependent manner, which were coincidental with the increase of GFAP. Two main downstream cytokines, IL-1ß and IL-18, were also upregulated in the brains of prion-infected mice. Moreover, the gasdermin D (GSDMD) levels, particularly the levels of GSDMD-NT, in the prion-infected brain tissues were remarkably increased, indicating activation of cell pyroptosis. The GSDMD not only co-localized well with the astrocytes but also with neurons at terminal stage, also showing a time-dependent increase after infection. Those data indicate that NLRP3 inflammasomes were remarkably activated in the infected brains, which is largely mediated by the proliferated astrocytes. Both astrocytes and neurons probably undergo a pyroptosis process, which may help the astrocytes to release inflammatory factors and contribute to neuron death during prion infection.

17.
Cancer Immunol Res ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630891

ABSTRACT

Follicular helper T (TFH) cells are essential for inducing germinal center (GC) reactions to mediate humoral adaptive immunity in tumors, but the mechanisms underlying TFH cell differentiation remain unclear. Here, we found that the metabolism sensor sirtuin 3 (SIRT3) is critical for TFH cell differentiation and GC formation during tumor and viral infection. SIRT3 deficiency in CD4+ T cells intrinsically enhanced TFH cell differentiation and GC reactions during tumor and virus infection. Mechanistically, damaged oxidative phosphorylation (OXPHOS) compensatively triggered the NAD+-glycolysis pathway to provide a cellular energy supply, which was necessary for SIRT3 deficiency-induced TFH cell differentiation. Blocking NAD+ synthesis-glycolysis signaling or recovering OXPHOS activities reversed the TFH cell differentiation induced by SIRT3 deficiency. Moreover, the mTOR and HIF1α signaling axis was found to be responsible for TFH cell differentiation induced by SIRT3 deficiency. HIF1α directly interacted with and regulated the activity of the transcription factor Bcl-6. Thus, our findings identify a cellular energy compensatory mechanism, regulated by the mitochondrial sensor SIRT3, that triggers NAD+-dependent glycolysis during mitochondrial OXPHOS injuries and a mTOR-HIF1α-Bcl-6 pathway to reprogram TFH cell differentiation. These data have implications for future cancer immunotherapy research targeting SIRT3 in T cells.

18.
ACS Appl Mater Interfaces ; 16(15): 19730-19741, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38591140

ABSTRACT

Metal-organic framework materials can be converted into carbon-based nanoporous materials by pyrolysis, which have a wide range of applications in energy storage. Here, we design special interface engineering to combine the carbon skeleton and nitrogen-doped carbon nanotubes (CNTs) with the transition metal compounds (TMCs) well, which mitigates the bulk effect of the TMCs and improves the conductivity of the electrodes. Zeolitic imidazolate framework-67 is used as a precursor to form a carbon skeleton and a large number of nitrogen-doped CNTs by pyrolysis followed by the in situ formation of Co3O4 and CoS2, and finally, Co3O4@CNTs and CoS2@CNTs are synthesized. The obtained anode electrodes exhibit a long cycle life and high-rate properties. In lithium-ion batteries (LIBs), Co3O4@CNTs have a high capacity of 581 mAh g-1 at a high current of 5 A g-1, and their reversible capacity is still 1037.6 mAh g-1 after 200 cycles at 1 A g-1. In sodium-ion batteries (SIBs), CoS2@CNTs have a capacity of 859.9 mAh g-1 at 0.1 A g-1 and can be retained at 801.2 mAh g-1 after 50 cycles. The unique interface engineering and excellent electrochemical properties make them ideal anode materials for high-rate, long-life LIBs and SIBs.

19.
Inorg Chem ; 63(16): 7241-7254, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38581386

ABSTRACT

The elimination of toluene is an obligatory target with increasing VOC emission in recent years. This study successfully prepared a single-atom Ir catalyst (Ir1/CeO2) by a simple incipient wetness impregnation method, confirmed by in situ CO DRIFTS and AC-HAADF-STEM. Compared to the cluster Ir catalyst (Ir/CeO2-C), Ir1/CeO2 exhibited excellent catalytic performance, stability, and water resistance for the oxidation of toluene. By Raman, H2-TPR, O2-TPD, and XPS experiments, abundant oxygen defects and a unique Ir3+-Ov-Ce3+ structure were formed for the Ir1/CeO2 sample because it had a lower oxygen vacancy formation energy. Furthermore, the DFT results revealed that the Ir1/CeO2 sample had a lower ring-opening energy barrier and adsorption energy of the ring-opening products, which was the rate-determining step for the oxidation of toluene. This work provides instructive insights into the construction of Ir/CeO2 catalysts for the highly efficient removal of VOCs.

20.
Adv Sci (Weinh) ; : e2308337, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572504

ABSTRACT

Physical unclonable functions (PUFs) have emerged as a promising encryption technology, utilizing intrinsic physical identifiers that offer enhanced security and tamper resistance. Multi-level PUFs boost system complexity, thereby improving system reliability and fault tolerance. However, crosstalk-free multi-level PUFs remain a persistent challenge. In this study, a hierarchical PUF system that harnesses the spontaneous phase separation of silk fibroin /PVA blend and the random distribution of silicon-vacancy diamonds within the blend is presented. The thermodynamic instability of phase separation and inherent unpredictability of diamond dispersion gives rise to intricate random patterns at two distinct scales, enabling time-efficient hierarchical authentication for cryptographic keys. These patterns are complementary yet independent, inherently resistant to replication and damage thus affording robust security and reliability to the proposed system. Furthermore, customized authentication algorithms are constructed: visual PUFs authentication utilizes neural network combined structural similarity index measure, while spectral PUFs authentication employs Hamming distance and cross-correlation bit operation. This hierarchical PUF system attains a high recognition rate without interscale crosstalk. Additionally, the coding capacity is exponentially enhanced using M-ary encoding to reinforce multi-level encryption. Hierarchical PUFs hold significant potential for immediate application, offering unprecedented data protection and cryptographic key authentication capabilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...