Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e30728, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38770296

ABSTRACT

To enhance the operability of the rat orthotopic left lung transplantation model, we implemented several improvements and meticulously detailed the procedure. One hundred and thirty-one healthy male Sprague Dawley rats, weighing between 250 and 300 g, were utilized, with 64 serving as donors, 64 as recipients, and 3 as sham controls. We employed a modified three-cuff technique for the orthotopic left lung transplantation. Notably, our modified perfusion method could prevent donor lung edema, while waist-shaped cuffs minimized suture slippage during anastomosis. Additionally, positioning the recipient rat in a slightly left-elevated supine position during anastomosis reduced tension on the lung hilum, thus mitigating the risk of vascular laceration. The introduction of a unique two-person anastomosis technique significantly reduced operation time and substantially improved success rates. Furthermore, maximizing inflation of donor lungs both during preservation and surgery minimized the occurrence of postoperative atelectasis. Various other procedural refinements contributed to the enhanced operability of our model. Sixty-four rat orthotopic left lung transplantations were performed with only one surgical failure observed. The acquisition time for donor lungs averaged (19 ± 4) minutes, while (11 ± 1) minutes were allocated for donor lung hilum anatomy and cuff installation. Recipient thoracotomy and left lung hilar anatomy before anastomosis required (24 ± 8) minutes, with anastomosis itself taking (31 ± 6) minutes. Remarkably, the survival rate at the 4-h postoperative mark stood at 96.7 %. Even six months post-operation, transplanted left rat lungs continued to exhibit proper inflation and contraction rhythms, displaying signs of chronic pathological changes. In summary, our modified rat model of orthotopic left lung transplantation demonstrates robust operability, significantly reducing surgical duration, improving operation success rates, and enhancing postoperative survival rates. Furthermore, its long-term survival capacity enables the simulation of acute and chronic disease processes following lung transplantation.

2.
Theranostics ; 14(7): 2794-2815, 2024.
Article in English | MEDLINE | ID: mdl-38773984

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) is an irreversible, fatal interstitial lung disease lacking specific therapeutics. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage biosynthesis pathway and a cytokine, has been previously reported as a biomarker for lung diseases; however, the role of NAMPT in pulmonary fibrosis has not been elucidated. Methods: We identified the NAMPT level changes in pulmonary fibrosis by analyzing public RNA-Seq databases, verified in collected clinical samples and mice pulmonary fibrosis model by Western blotting, qRT-PCR, ELISA and Immunohistochemical staining. We investigated the role and mechanism of NAMPT in lung fibrosis by using pharmacological inhibition on NAMPT and Nampt transgenic mice. In vivo macrophage depletion by clodronate liposomes and reinfusion of IL-4-induced M2 bone marrow-derived macrophages (BMDMs) from wild-type mice, combined with in vitro cell experiments, were performed to further validate the mechanism underlying NAMPT involving lung fibrosis. Results: We found that NAMPT increased in the lungs of patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis. NAMPT inhibitor FK866 alleviated BLM-induced pulmonary fibrosis in mice and significantly reduced NAMPT levels in bronchoalveolar lavage fluid (BALF). The lung single-cell RNA sequencing showed that NAMPT expression in monocytes/macrophages of IPF patients was much higher than in other lung cells. Knocking out NAMPT in mouse monocytes/macrophages (Namptfl/fl;Cx3cr1CreER) significantly alleviated BLM-induced pulmonary fibrosis in mice, decreased NAMPT levels in BALF, reduced the infiltration of M2 macrophages in the lungs and improved mice survival. Depleting monocytes/macrophages in Namptfl/fl;Cx3cr1CreER mice by clodronate liposomes and subsequent pulmonary reinfusion of IL-4-induced M2 BMDMs from wild-type mice, reversed the protective effect of monocyte/macrophage NAMPT-deletion on lung fibrosis. In vitro experiments confirmed that the mechanism of NAMPT engaged in pulmonary fibrosis is related to the released NAMPT by macrophages promoting M2 polarization in a non-enzyme-dependent manner by activating the STAT6 signal pathway. Conclusions: NAMPT prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Targeting the NAMPT of monocytes/macrophages is a promising strategy for treating pulmonary fibrosis.


Subject(s)
Bleomycin , Cytokines , Idiopathic Pulmonary Fibrosis , Macrophages , Mice, Inbred C57BL , Nicotinamide Phosphoribosyltransferase , Animals , Nicotinamide Phosphoribosyltransferase/metabolism , Mice , Macrophages/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Cytokines/metabolism , Humans , Disease Models, Animal , Lung/pathology , Lung/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Mice, Transgenic , Male , Piperidines/pharmacology , Female , Acrylamides
3.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730387

ABSTRACT

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Subject(s)
Morphinans , Proto-Oncogene Proteins c-akt , Pulmonary Fibrosis , Signal Transduction , Animals , Humans , Male , Mice , A549 Cells , Bleomycin , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Down-Regulation , Epithelial-Mesenchymal Transition/drug effects , Lung/pathology , Lung/drug effects , Mice, Inbred C57BL , Morphinans/pharmacology , Morphinans/therapeutic use , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Signal Transduction/drug effects , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
4.
J Bioenerg Biomembr ; 56(2): 181-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411863

ABSTRACT

Lung adenocarcinoma (LUAD) is one of the most lethal and common malignancies. The energy metabolism of LUAD is a critical factor affecting its malignant progression, and research on this topic can aid in the development of novel cancer treatment targets. Bioinformatics analysis of the expression of long non-coding RNA (lncRNA) LINC00665 in LUAD was performed. Downstream regulatory molecules of LINC00665 were predicted using the StarBase database. We used quantitative reverse transcription polymerase chain reaction and western blot to measure the expression at mRNA and protein levels, respectively. The effects of the LINC00665/let-7c-5p/HMMR axis on cell viability in vitro were tested by CCK-8 assay. The regulatory effects on glycolysis were analyzed by extracellular acidification rate, oxygen consumption rate, glucose uptake, adenosine triphosphate production, and lactate production. The predicted competitive endogenous RNA mechanism between LINC00665 and let-7c-5p/HMMR was verified by a dual-luciferase reporter gene assay. LINC00665 was upregulated in LUAD. Silencing LINC00665 inhibited tumor proliferation and reduced the glycolytic activity of tumor cells. Additionally, the expression of LINC00665 had a negative correlation with that of let-7c-5p, while the expression of HMMR was remarkably inhibited by let-7c-5p. HMMR could affect the development of LUAD by influencing glycolytic capacity. Mechanistically, LINC00665 acted as a molecular sponge to absorb let-7c-5p and targeted HMMR. Transfection of let-7c-5p inhibitor or overexpression of HMMR plasmid could reverse the inhibition in proliferation and glycolysis of LUAD cells induced by silencing of LINC00665. In summary, this study demonstrated that the LINC00665/let-7c-5p/HMMR regulatory axis promoted the tumorigenesis of LUAD by enhancing aerobic glycolysis, suggesting that this regulatory axis was an effective target for inhibiting LUAD progression and providing theoretical support for the development of new drugs for LUAD.


Subject(s)
Adenocarcinoma , MicroRNAs , Humans , Glycolysis , Energy Metabolism , Cell Survival , Lung , MicroRNAs/genetics , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
5.
Eur J Pharmacol ; 967: 176355, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38280463

ABSTRACT

Pulmonary fibrosis is a challenging lung disease characterized by a bleak prognosis. A pivotal element in the progression of this disease is the dysregulated recruitment of macrophages. Nicotinamide phosphoribose transferase (NAMPT), secreted by alveolar epithelial cells and inflammatory cells, has been previously identified to influence macrophage inflammation in acute lung injury through the nicotinamide adenine dinucleotide (NAD) rescue synthesis pathway. Nonetheless, the exact role of NAMPT in the regulation of lung fibrosis is yet to be elucidated. In our research, we employed bleomycin (BLM) to induce pulmonary fibrosis in Namptflox/flox;Cx3cr1CreER mice, using Namptflox/flox mice as controls. Our findings revealed an augmented expression of NAMPT concurrent with a marked increase in the secretion of NAD and inflammatory cytokines such as IL-6, TNF-α, and TGF-ß1 post-BLM treatment. Furthermore, an upsurge in NAMPT-positive macrophages was observed in the lungs of BLM-treated Namptflox/flox mice. Notably, a conditional knockout of NAMPT (NAMPT cKO) in lung macrophages curtailed the BLM-induced inflammatory responses and significantly mitigated pulmonary fibrosis. This was associated with diminished phospho-Sirt1 (p-Sirt1) expression levels and a concomitant rise in mothers against decapentaplegic homolog 7 (Smad7) expression in BLM-treated mouse lungs and murine RAW 264.7 macrophage cells. Collectively, our data suggests that NAMPT exacerbates macrophage-driven inflammation and pulmonary fibrosis via the Sirt1-Smad7 pathway, positioning NAMPT as a promising therapeutic target for pulmonary fibrosis intervention.


Subject(s)
Pulmonary Fibrosis , Animals , Mice , Bleomycin/adverse effects , Cytokines/metabolism , Inflammation , Macrophages/metabolism , NAD , Niacinamide , Nicotinamide Phosphoribosyltransferase/genetics , Pulmonary Fibrosis/chemically induced , Sirtuin 1/genetics , Sirtuin 1/metabolism , Transferases
6.
Front Oncol ; 13: 1180723, 2023.
Article in English | MEDLINE | ID: mdl-37476379

ABSTRACT

As part of the tumor microenvironment (TME), collagen plays a significant role in cancer fibrosis formation. However, the collagen family expression profile and clinical features in lung adenocarcinoma (LUAD) are poorly understood. The objective of the present work was to investigate the expression pattern of genes from the collagen family in LUAD and to develop a predictive signature based on collagen family. The Cancer Genome Atlas (TCGA) samples were used as the training set, and five additional cohort samples obtained from the Gene Expression Omnibus (GEO) database were used as the validation set. A predictive model based on five collagen genes, including COL1A1, COL4A3, COL5A1, COL11A1, and COL22A1, was created by analyzing samples from the TCGA cohort using LASSO Cox analysis and univariate/multivariable Cox regression. Using Collagen-Risk scores, LUAD patients were then divided into high- and low-risk groups. KM survival analysis showed that collagen signature presented a robust prognostic power. GO and KEGG analyses confirmed that collagen signature was associated with extracellular matrix organization, ECM-receptor interaction, PI3K-Akts and AGE-RAGE signaling activation. High-risk patients exhibited a considerable activation of the p53 pathway and cell cycle, according to GSEA analysis. The Collage-Risk model showed unique features in immune cell infiltration and tumor-associated macrophage (TAM) polarization of the TME. Additionally, we deeply revealed the association of collagen signature with immune checkpoints (ICPs), tumor mutation burden (TMB), and tumor purity. We first constructed a reliable prognostic model based on TME principal component-collagen, which would enable clinicians to treat patients with LUAD more individually.

7.
Biochem Genet ; 61(4): 1528-1547, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36658310

ABSTRACT

Lung adenocarcinoma (LUAD) is a common malignancy. Many studies have shown that LUAD is resistant to gemcitabine chemotherapy, resulting in poor treatment outcomes in patients. We designed this study to reveal influences of hsa-miR-195-5p/E2F7/CEP55 axis on gemcitabine resistance and autophagy of LUAD cells. The expression data of LUAD-related mRNAs were downloaded from TCGA-LUAD database for differential expression analysis. The bioinformatics databases (hTFtarget, starBase and TargetScan) were used to predict the upstream and downstream regulatory molecules of E2F7. Then the binding relationships between E2F7 and regulatory molecules were verified by ChIP and dual-luciferase reporter assay. qRT-PCR and western blot were used to detect the mRNA and protein levels of has-miR-195-5p, E2F7, and CEP55. CCK-8 assay was used to analyze the half-maximal inhibitory concentration (IC50) and cell proliferation ability of LUAD cells after gemcitabine treatment. Apoptosis was detected by flow cytometry. Apoptosis/autophagy markers and LC3 aggregation were detected by western blot and immunofluorescence, respectively. Finally, the mouse transplantation model was constructed to verify the regulation mechanism in vivo. In LUAD cells and tissues, E2F7 and CEP55 were highly expressed, while has-miR-195-5p was relatively less expressed. The ChIP or dual-luciferase assays demonstrated the binding relationships of E2F7 to the CEP55 promoter region and has-miR-195-5p to the 3'-UTR of E2F7. Cell experiments demonstrated that overexpression of hsa-miR-195-5p stimulated LUAD cell apoptosis and inhibited autophagy and gemcitabine resistance, while further overexpression E2F7/CEP55 could reverse the impact by hsa-miR-195-5p overexpression. In vivo experiments identified that hsa-miR-195-5p/E2F7/CEP55 axis constrained the growth of LUAD tumor. Hsa-miR-195-5p promoted apoptosis, repressed proliferation, and autophagy via E2F7/CEP55 and reduced gemcitabine resistance in LUAD, indicating that hsa-miR-195-5p/E2F7/CEP55 may be a novel target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Animals , Mice , Gemcitabine , Adenocarcinoma of Lung/genetics , MicroRNAs/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , 3' Untranslated Regions , Autophagy , Cell Cycle Proteins , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
8.
Front Microbiol ; 14: 1323342, 2023.
Article in English | MEDLINE | ID: mdl-38264479

ABSTRACT

Introduction: Microbiome within plant tissues is pivotal for co-evolution with host plants. This microbiome can colonize the plant, with potential transmission via seeds between parents and offspring, affecting seedling growth and host plant adaptability to the environment. Methods: We employed 16S rRNA gene amplicon analysis to investigate the vertical distribution of core microbiome in cotton seeds across ecological niches [rhizosphere, root, stem, leaf, seed and seed-P (parental seed)] of the three cotton genotypes. Results: The findings demonstrated a significant decrease in microbiome diversity and network complexity from roots, stems, and leaves to seeds. The microenvironment exerted a more substantial influence on the microbiome structure of cotton than the genotypes. The core endophytic microorganisms in cotton seeds comprised 29 amplicon sequence variants (ASVs) affiliated with Acidimicrobiia, Alphaproteobacteria, Bacilli, Bacteroidia, Clostridia, Gammaproteobacteria, and unclassified_Proteobacteria. These vertically transmitted taxa are widely distributed in cotton plants. Through 16S rRNA gene-based function prediction analysis of the cotton microbiome, we preliminarily understood that there are potential differences in metabolic capabilities and phenotypic traits among microbiomes in different microhabitats. Discussion: In conclusion, this study demonstrated the crucial role of the microenvironment in influencing the cotton microbiome and offered insights into the structures and functions of the cotton seed microbiome, facilitating future crop yield enhancement through core seed microbiome regulation.

9.
Sci Rep ; 12(1): 16828, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207435

ABSTRACT

To evaluate the prognostic role of the preoperative plasma lipid profile, including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in patients with lung squamous cell carcinoma (LUSC) who underwent complete resection. Clinical data, including preoperative plasma profile levels, were retrospectively collected and reviewed in 300 patients with LUSC who underwent radical lung resection between 2016 and 2017. The overall survival (OS) and disease-free survival (DFS) were assessed by the Kaplan-Meier method and the Cox proportional hazards regression model. TG ≤ 1.35, HDL-C ≤ 1.17, and LDL-C ≤ 2.32 were deemed as independent preoperative risk factors for OS, and HDL-C ≤ 1.17 was an independent preoperative risk factor for DFS. In the multivariate analyses involving OS and DFS, a decreased HDL-C level was significantly associated with worse OS (HR, 0.546; 95% CI, 0.380-0.784, P = 0.001) and DFS (HR, 0.644; 95% CI, 0.422-0.981, P = 0.041). Additionally, an increased TG (HR, 0.546; 95% CI, 0.366-0.814, P = 0.003) or LDL-C (HR, 0.652; 95% CI, 0.456-0.933, P = 0.019) level was significantly associated with better OS. In patients with LUSC, decreased levels of HDL-C may predict worse outcomes for both DFS and OS, while increased TG or LDL-C levels may predict better OS.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Carcinoma, Squamous Cell/surgery , Cholesterol, HDL , Cholesterol, LDL , Humans , Lipoproteins, HDL , Lung , Lung Neoplasms/surgery , Retrospective Studies , Triglycerides
10.
Cells ; 11(19)2022 10 06.
Article in English | MEDLINE | ID: mdl-36231101

ABSTRACT

Lung ischemia-reperfusion injury (LIRI) is associated with many diseases, including primary graft dysfunction after lung transplantation, and has no specific and effective therapies. Necroptosis contributes to the pathogenesis of ischemia-reperfusion injury. Necrostatin-1 (Nec-1), the necroptosis inhibitor targeting RIPK1, has been reported to alleviate ischemia-reperfusion injury in various organs. However, the underlying mechanism of Nec-1 in LIRI remains unclear. In this paper, an in vivo LIRI model was built up by left lung hilar clamping in mice, and an in vitro cold ischemia-reperfusion (CI/R) model using BEAS-2B cells was applied to mimic the lung transplantation setting. We found Nec-1 significantly alleviated ischemia-reperfusion-induced lung injury, cytokine releasing, and necroptosis of epithelial cells in mouse lungs. In vitro, Nec-1 also mitigated CI/R-induced cell death and inflammatory responses in BEAS-2B cells, and these protective effects were achieved by simultaneously inhibiting the formation of necrosome and RIPK1-dependent apoptosis. However, Nec-1 decreased the necrosome number but increased the apoptosis level in lung tissues after ischemia reperfusion. We further clarified that Nec-1 could also attenuate lung injury by promoting neutrophil apoptosis from flow cytometry. In conclusion, Nec-1 alleviated lung ischemia-reperfusion injury by inhibiting necroptosis and apoptosis of epithelial cells and promoting the apoptosis of neutrophils. Thus, Nec-1 could be a promising medication against primary graft dysfunction after lung transplantation.


Subject(s)
Lung Injury , Primary Graft Dysfunction , Reperfusion Injury , Animals , Apoptosis , Cytokines/pharmacology , Epithelial Cells/pathology , Imidazoles , Indoles , Lung/pathology , Lung Injury/pathology , Mice , Necroptosis , Primary Graft Dysfunction/pathology , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology
11.
J Oncol ; 2022: 5111237, 2022.
Article in English | MEDLINE | ID: mdl-36090891

ABSTRACT

Background: ESCA is one of the digestive tract tumors with a high fatality. It is implicated in an intricate gene regulation process, but the pathogenesis remains ambiguous. Methods: The study used the packages of Limma from R software to analyze DEGs of ESCA in the GEO database and TCGA database. We employed the DAVID website for enrichment analysis, and the string database constructed the PPI network. Hub genes were identified from ESCA DEGs with Cytoscape MCODE. We evaluated the clinical relevance of LOX expression and its DNA methylation in the cBioPortal database and explored the roles of LOX in ESCA immunity, especially immune cell infiltration levels and immune checkpoint expression, by immunedeconv package of R software. Conclusions: The overexpression of LOX in ESCA is regulated by DNA hypomethylation; LOX overexpression or LOX hypomethylation can predict a worse prognosis in patients with ESCA. Besides, LOX may be involved in TIME regulation, promoting the infiltration levels and function of TAM. Hence, high LOX expression affected by DNA hypomethylation has an essential role in patients with ESCA, which may become an effective prognostic marker and therapeutic target.

12.
J Biomed Nanotechnol ; 17(7): 1380-1391, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34446141

ABSTRACT

Esophageal cancer is one of the most common human malignancies and ranks sixth for global mortality; the major histological type is esophageal squamous cell carcinoma (ESCC). Here we assessed the effect of long non-coding (lnc) RNA OIP5-AS1 on the miR-30a-5p/Forkhead box protein D1 (FOXD1) axis in ESCC and investigated the underlying mechanism involving the ERK1/2 signaling pathway. lnc RNA OIP5-AS1 was highly expressed in human ESCC tissues and cells, targeted miR-30a-5p, and inhibited miR-30a-5p expression. Additionally, in human ESCC tissues, miR-30a-5p was poorly expressed, whereas FOXD1 mRNA and protein were highly expressed, with a negative correlation between miR-30a-5p and FOXD1 expression. miR-30a-5p targeted and inhibited FOXD1 expression. FOXD1 promoted the proliferation and invasion of ESCC and was related to the ERK1/2 signaling pathway; ERK1/2 inhibitors (LY-3214996) reversed the biological function of FOXD1. miR-30a-5p combined with FOXD1 regulated ERK1/2 expression and inhibited tumor growth in vivo. In this study, micro- and nano-particles were used as carriers to construct Nanocapsules carrying miR-30a-5p mimics and miR-30a-5p inhibitor through self-assembly method, so as to realize an efficient Nanocapsules delivery system of miR-30a-5p to esophageal cancer cells. It provides insights into targeted drug therapy and the development of micro- and nano-particles carriers.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Head and Neck Neoplasms , MicroRNAs , RNA, Long Noncoding , Cell Line, Tumor , Cell Proliferation , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Transfection
13.
BMC Cancer ; 21(1): 666, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34088283

ABSTRACT

BACKGROUND: Early-stage non-small lung cancer patients may survive long enough to develop second primary lung cancers. However, few studies have accurately described the therapeutic method, evaluation or prognostic factors for long-term survival in this complex clinical scenario. METHODS: Patients who had first and second primary non-small lung cancer in the Surveillance, Epidemiology, and End Results database between 2004 and 2015 were evaluated. Patients were included when their tumors were pathologically diagnosed as non-small lung cancer and in the early-stage (less than 3 cm and with no lymph node metastasis). Therapeutic methods were categorized as lobectomy, sublobectomy or no surgery. The influence of different therapeutic methods on the overall survival rate was compared. RESULTS: For the first primary tumor, patients who underwent lobectomy achieved superior survival benefits compared with patients who underwent sublobectomy. For the second primary tumor, long-term survival was similar in patients who underwent lobectomy and those who underwent sublobectomy treatment. The multivariate analysis indicated that age, disease-free time interval, sex, and first and second types of surgery were independent prognostic factors for long-term survival. Our results showed that the 5-year overall survival rate was 91.9% when the disease-free interval exceeded 24 months. CONCLUSION: Lobectomy for the first primary tumor followed by sublobectomy for the second primary tumor may be a beneficial therapeutic method for patients. If the disease-free interval exceeds 24 months, the second primary tumor will have no influence on the natural course for patients diagnosed with a first primary non-small lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/surgery , Neoplasm Recurrence, Local/epidemiology , Neoplasms, Second Primary/surgery , Pneumonectomy/methods , Adult , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Disease-Free Survival , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Recurrence, Local/prevention & control , Neoplasm Staging , Neoplasms, Second Primary/diagnosis , Neoplasms, Second Primary/mortality , Neoplasms, Second Primary/pathology , Pneumonectomy/statistics & numerical data , Prognosis , Retrospective Studies , SEER Program/statistics & numerical data , Survival Rate , Time Factors
14.
Mol Immunol ; 120: 83-92, 2020 04.
Article in English | MEDLINE | ID: mdl-32106023

ABSTRACT

Pulmonary fibrosis is a progressive chronic inflammatory lung disease whose pathogenesis is complicated. Platelets and neutrophils play important roles in the progression of pulmonary inflammation. We have reported that cangrelor, a non-sepesific GPR17 antagonist, alleviates pulmonary fibrosis partly by inhibiting macrophage inflammation in mice. Cangrelor is also a well-known anti-platelet agent. To test whether cangrelor mitigated pulmonary fibrosis partly through the inhibition of platelets, bleomycin (BLM) was used to induce pulmonary fibrosis in C57BL/6 J mice. We found that cangrelor (10 mg/kg) not only significantly decreased BLM-induced release of inflammatory cytokines (PF4, CD40 L and MPO), but also decreased the increment of platelets, neutrophils and platelet-neutrophil aggregates in the fibrotic lung and in the peripheral blood of BLM-treated mice. In addition, cangrelor decreased the number of CD40 and MPO double positive neutrophils and the expression level of CD40 in BLM-treated mouse lungs. Based on these results we conclude that cangrelor alleviates BLM-induced lung inflammation and pulmonary fibrosis in mice, partly through inhibition of platelet activation, therefore reducing the infiltration of neutrophils due to the adhesion of platelets and neutrophils mediated by CD40 - CD40 L interaction. Cangrelor could be a potential therapeutic medicine for pulmonary fibrosis.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Platelet Activation/drug effects , Pulmonary Fibrosis/drug therapy , Adenosine Monophosphate/therapeutic use , Animals , Bleomycin/toxicity , CD40 Antigens/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Lung/drug effects , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/immunology , Neutrophils/drug effects , Neutrophils/immunology , Platelet Activation/immunology , Platelet Aggregation Inhibitors/therapeutic use , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/immunology
15.
J Med Entomol ; 56(3): 803-810, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30715428

ABSTRACT

Although scaled-up interventions and effective control efforts have drastically reduced malaria morbidity and mortality, malaria remains a serious threat to public health worldwide. Anopheles sinensis Wiedemann 1828 is a historically important vector of Plasmodium vivax (Haemosporida: Plasmodiidae) malaria in China. Insecticide resistance has become a major obstacle to vector-borne disease control. However, little is known about the insecticide resistance of An. sinensis in Wenzhou, an important coastal port city in Zhejiang province, China. The aim of this study was to examine insecticide resistance and mechanisms in An. sinensis field mosquito populations. Evidence of multiple insecticide resistance was found in An. sinensis adult female populations. Medium to high frequencies of target site kdr together with fixed ace-1 mutations was detected in both the Ruian and Yongjia populations. Both populations showed an association between kdr L1014 mutation and resistance phenotype when tested against deltamethrin and DDT. Significantly different metabolic enzyme activities were found between the susceptible laboratory strain and field-collected mosquitoes from both Ruian and Yongjia. Both field collected An. sinensis populations exhibited significantly higher P450 enzyme activity compared with the laboratory strain, while the field-collected resistant mosquitoes exhibited various GST and COE enzyme activities. These results indicate multiple resistance mechanisms in An. sinensis field populations. Effective implementation of insecticide resistance management strategies is urgently needed. The data collected in this study will be valuable for modeling insecticide resistance spread and vector-control interventions.


Subject(s)
Anopheles/drug effects , DDT/pharmacology , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Anopheles/enzymology , Anopheles/genetics , China , Female
16.
BMC Cancer ; 19(1): 8, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30611231

ABSTRACT

BACKGROUND: In this retrospective study, we aimed to demonstrated that three-port single-intercostal (SIC) thoracoscopic lobectomy is an effective choice for lung cancer by comparing the perioperative outcomes of patients with non-small-cell lung cancer treated with three-port SIC and conventional multiple-intercostal (MIC) thoracoscopic lobectomy. METHODS: From January 2013 to January 2018, 642 non-small-cell lung cancer patients underwent thoracoscopic lobectomy via a three-port SIC or MIC technique. Propensity-matched analysis incorporating preoperative clinical variables was used to compare the perioperative outcomes between the two groups. RESULTS: The first 20 patients were excluded to account for the learning curve effect in the SIC group. Propensity matching yielded 186 patients in each group. A small percentage of patients had major morbidity, including 4.8% in the SIC group and 6.5% in the MIC group; there was no significant difference between the two groups. Although the total number of lymph nodes harvested (25.3 vs. 23.8, p = 0.160) and stations removed (6.5 vs. 6.7, p = 0.368) were similar between the two groups, more subcarinal lymph nodes were removed (6.9 vs. 5.2, p < 0.001) in the SIC group than in the MIC group. Furthermore, other perioperative outcomes in the SIC group were not fewer than those in the MIC group. CONCLUSIONS: Both techniques are acceptable for the treatment of non-small-cell lung cancer. Three-port SIC VATS lobectomy can provide an alternative procedure in thoracoscopic surgery.


Subject(s)
Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/surgery , Lung/surgery , Pneumonectomy , Adult , Aged , Carcinoma, Non-Small-Cell Lung/complications , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Length of Stay , Lung/pathology , Lung Neoplasms/complications , Lung Neoplasms/pathology , Male , Middle Aged , Postoperative Complications/pathology , Thoracic Surgery, Video-Assisted/adverse effects , Thoracic Surgery, Video-Assisted/methods , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...