Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Turk J Chem ; 47(1): 207-217, 2023.
Article in English | MEDLINE | ID: mdl-37720852

ABSTRACT

Fabricating highly efficient Pd-based nanocatalysts with a well-defined structure is desired for the commercialization of direct ethanol fuel cell (DEFC). Herein, a series of hierarchical three-dimensional N-doped hollow graphene spheres (NHGS) supported dendritic PdCu alloy catalysts PdxCu(d)-NHGS (x: Cu/Pd theoretical molar ratio of 4, 2, and 1) are assembled by one-pot ascorbic acid reduction-immobilization method. Aiming to maximize the Pd utilization and realize the efficient ethanol electrooxidation, this novel electrocatalyst offers potent activity sites and promotes electron and ion kinetics simultaneously. Characterization indicates that the as-obtained Pd4Cu(d) alloy nanoparticles with average sizes of approximately 55 nm are evenly dispersed on the NHGS supporting materials obtained by using the SiO2 nanospheres template strategy. Three catalysts all exhibit enhanced electrocatalytic activity, of which the Pd4Cu(d)-NHGS shows the highest mass current activity (2683 mA mgPd-1), which is 2.59 times of the commercial Pd/C toward ethanol electrooxidation in alkaline medium. Based on the results, we believed that the Pd4Cu(d)-NHGS could exhibit extensive application prospect in alkaline DEFC.

2.
Chemosphere ; 305: 135315, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35716713

ABSTRACT

Photocatalytic technology has been considered as a promising method to alleviate environmental pollution owing to the dual characteristics of redox. The novel V-based H5PMo10V2O40 (HPA-2) photocatalyst with Z-scheme heterostructure was constructed. The energy level of HPA-2 matches well with CdS and g-C3N4 (CN) according to Mott-Schottky and UV-Vis diffused reflectance tests, which allows the efficient separation of photogenerated electrons. The optimized CdS/HPA-2/CN showed superior ability in Rhodamine B (RhB) degradation and reduction of Cr (Ⅵ) under visible light irradiation. The maximum rate constant reached 0.092 min-1 for RhB degradation at 60 min and 0.260 min-1 for Cr (Ⅵ) reduction at 20 min, respectively. The photocatalytic mechanism was analyzed by adding scavengers. The effect of active species for RhB degradation was determined as h+ > ·O2- > ·OH, while ·O2- and e- were essential for the reduction of Cr (Ⅵ). Besides, cyclic tests exhibit excellent repeatability and stable structure of CdS/HPA-2/CN after four cycles. Meanwhile, the detailed degradation process of RhB involving de-ethylation, hydroxylation, substitution and decarboxylation was determined according to LC-MS and evaluated by Fukui function calculation. Furthermore, total organic carbon content decreased to 6.2% of the initial value. In this work, as an electron mediator, HPA-2 provides the inspiration for construction of Z-scheme heterojunction, and CdS/HPA-2/CN exhibits enormous potential in the environmental remediation by photocatalysis.


Subject(s)
Environmental Restoration and Remediation , Water Purification , Catalysis , Electrons , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...