Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 700: 149598, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38308910

ABSTRACT

Myocardial tissue ischemia damages myocardial cells. Although reperfusion is an effective technique to rescue myocardial cell damage, it may also exacerbate myocardial cell damage. Ferroptosis, an iron-dependent cell death, occurs following myocardial ischemia-reperfusion (I/R). Piceatannol (PCT) is a natural stilbene compound with excellent antioxidant properties that protect against I/R injury and exerts protective effects against ferroptosis-induced cardiomyocytes following I/R injury; however, the exact mechanism remains to be elucidated. PURPOSE: This study aims to investigate the protective effect and mechanism of PCT on myocardial ischemia-reperfusion injury. METHODS: An ischemia-reperfusion model was established via ligation of the left anterior descending branch of mice's hearts and hypoxia-reoxygenation (H/R) of cardiomyocytes. RESULTS: During ischemia-reperfusion, Nuclear factor E2-related factor 2 (Nrf-2) expression was downregulated, the left ventricular function was impaired, intracellular iron and lipid peroxidation product levels were elevated, and cardiomyocytes underwent ferroptosis. Furthermore, ferroptosis was enhanced following treatment with an Nrf-2 inhibitor. After PCT treatment, Nrf-2 expression significantly increased, intracellular ferrous ions and lipid peroxidation products significantly reduced, Ferroportin1 (FPN1) expression increased, and transferrin receptor-1 (TfR-1) expression was inhibited. CONCLUSIONS: PCT regulates iron metabolism through Nrf-2 to protect against myocardial cell ferroptosis induced by myocardial I/R injury.


Subject(s)
Ferroptosis , Myocardial Reperfusion Injury , NF-E2-Related Factor 2 , Reperfusion Injury , Stilbenes , Animals , Mice , Ischemia , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac , NF-E2-Related Factor 2/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Stilbenes/pharmacology
2.
Biomed Pharmacother ; 163: 114704, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37100013

ABSTRACT

Age-related hearing loss (ARHL) is a common issue associated with aging. One of the typical causes of hearing loss is the damage to inner ear hair cells. In addition, oxidative stress and inflammation contribute to ARHL. To avoid excessive inflammatory responses, non-classical scorch death pathway by cell membrane lipopolysaccharide (LPS) activates of caspase-11. Piceatannol (PCT) is also known for anti-tumor, antioxidant and anti-inflammatory effects; however, the protective effect of piceatannol (PCT) on ARHL is unclear. The aim of this study was to elucidate the mechanism underlying protective effect of PCT on ARHL-induced inner ear hair cell damage. In vivo experiments showed that PCT could protect mice from inflammatory aging-induced hearing loss as well as from inner hair cells (IHC) and spiral ganglion (SG) deficits. In addition, inflammatory vesicle inhibitor BAY11-7082 ameliorated ARHL, inhibited NLRP3 and reduced GSDMD expression. In in vitro experiments we used LPS and D-gal to simulate the aging inflammatory environment. The results showed that intracellular reactive oxygen species levels, expression of Caspase-11, NLRP3, and GSDMD were significantly increased, yet treatment with PCT or BAY11-7082 significantly improved HEI-OC-1 cell injury while reducing inflammation-associated protein expression as well as the occurrence of pyroptosis. In conclusion, these results suggest a protective role for PCT against ARHL, possibly through Caspase-11-GSDMD pathway. Our findings may provide a new target and theoretical basis for hearing loss treatment using PCT.


Subject(s)
Presbycusis , Pyroptosis , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/toxicity , Presbycusis/pathology , Inflammation/drug therapy , Caspases
3.
ACS Omega ; 7(22): 18498-18508, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35694456

ABSTRACT

Cerebral endothelial H2S protects against cerebral ischemia-reperfusion injury through vasodilation, but its cerebral vasodilation mechanism and regulation of production are poorly understood. The RhoA-ROCK pathway plays important roles in vascular function. In this study, the roles of this pathway in the endothelial H2S production and vasodilation in rat cerebral arteries were investigated. Acetylcholine significantly increased H2S-generating enzyme cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) protein expressions and H2S production in rat cerebrovascular endothelial cells (ECs), but the increases were markedly decreased by the M receptor blocker atropine or the CSE inhibitor dl-propargylglycine. Pretreatment with dl-propargylglycine or the 3-MST inhibitor l-aspartic acid markedly reduced the acetylcholine-increased H2S; CSE protein expression and H2S levels in the ECs were obviously attenuated by the RhoA agonist U46619 but increased by the RhoA inhibitor C3 transferase. U46619 also reduced 3-MST protein expression; Acetylcholine markedly inhibited RhoA protein expression and activity, but the inhibition was obviously reversed by atropine, dl-propargylglycine, and l-aspartic acid, respectively; Acetylcholine-induced endothelium-dependent vasodilation in rat cerebral basilar artery was significantly attenuated by pretreatment with dl-propargylglycine or l-aspartic acid or RhoA inhibitor CCG-1423 or ROCK inhibitor KD025, and was further decreased by co-pretreatment with dl-propargylglycine (or l-aspartic acid) and CCG-1423 (or KD025); NaHS significantly relaxed rat cerebral basilar artery vascular smooth muscle cells and inhibited ROCK1/2 activities, phosphorylated myosin light chain (MLC) protein expression, and KCl-increased [Ca2+]i, but these relaxation and inhibitions were markedly attenuated by pretreatment with C3 transferase or ROCK inhibitor Y27632. Our results demonstrated that endothelial H2S production is promoted by activation of the M receptor but inhibited by the RhoA-ROCK pathway in rat cerebral arteries; the endothelial H2S induces cerebral vasodilation by inhibiting this pathway to reduce phosphorylation of MLC and [Ca2+]i in vascular smooth muscle cells.

4.
Oxid Med Cell Longev ; 2021: 9921982, 2021.
Article in English | MEDLINE | ID: mdl-34257823

ABSTRACT

Revascularization is an effective therapy for rescuing myocardial tissue after ischemic events. However, the process of reperfusion can lead to more severe cardiomyocyte damage, called myocardial ischemia-reperfusion (I/R) injury (MIRI). We have previously shown that vitexin (VT) (a flavonoid compound derived from natural products) protects against MIRI; however, the exact mechanisms underpinning this effect require further elucidation. This study is aimed at elucidating the protective mechanism of VT in inhibiting ischemic myocardial mitochondrial dysfunction and reducing cardiomyocyte apoptosis by regulating Epac1-Rap1 signaling. Isolated rat hearts were subjected to MIRI in a Langendorff perfusion system, and H9c2 cells were subjected to hypoxia/reoxygenation (H/R) in vitro. Our analyses show that during I/R, Epac1 expression was upregulated, left ventricular dysfunction deteriorated, mitochondrial dynamics were disrupted, and both myocardial cells and tissues exhibited apoptosis. Furthermore, administration of 8-CPT (an Epac agonist) exacerbated cardiomyocyte injury and mitochondrial dysfunction. Interestingly, suppressing the function of Epac1 through VT or ESI-09 (an Epac inhibitor) treatment during I/R reduced the myocardial infarct size, cardiomyocyte apoptosis, and reactive oxygen species production; alleviated mitochondrial dysfunction by increasing mitochondrial membrane potential; elevated MFN2 expression; and inhibited Drp1 expression. To our knowledge, our results reveal, for the first time, the mechanisms underlying the protective effect of VT in the myocardium of rats with MIRI. Moreover, we provide a new target and theoretical basis for VT in the treatment of ischemic heart disease.


Subject(s)
Apigenin/therapeutic use , Guanine Nucleotide Exchange Factors/metabolism , Myocardial Ischemia/drug therapy , Myocardial Reperfusion Injury/drug therapy , Animals , Apigenin/pharmacology , Male , Rats , Rats, Sprague-Dawley , Signal Transduction
5.
Front Oncol ; 11: 659709, 2021.
Article in English | MEDLINE | ID: mdl-33859949

ABSTRACT

BACKGROUND: Malignant rhabdoid tumor of the kidney (MRTK) is a rare type of tumor that lacks typical clinical manifestations. Herein, we presented clinical data of 2 children with MRTK. In addition, we used a high-throughput RNA-sequencing (RNA-seq), GO analysis, and KEGG signaling pathway analysis to examine gene expression differences at the transcripts level between 2 patients with MRTK and 3 patients with non-tumor diseases without other symptoms. CASE REPORT: Preoperative B-scan ultrasonography and computed tomography (CT) examination in 2 cases suggested nephroblastoma. Both patients were treated with radical nephrectomy. After the operation, MRTK was confirmed by pathological examination. Child 1 and Child 2 then received 7 courses and 12 courses of regular chemotherapy, respectively. Child 1 was followed up for 2 years, and Child 2 for 3.1 years without showing symptoms. RNA-seq results showed 2203 differential genes (DEGs) in the kidney tissue of children with MRTK compared to normal tissue (p <0.01). GO analysis suggested that most DEGs participate in protein binding. KEGG results showed that the DEGs were mainly involved in the PI3K-Akt signaling pathway and microRNA-related proteins. CONCLUSION: The PI3K-Akt signaling pathway and microRNA-related proteins as targets have extremely high potential value for the diagnosis and treatment of MRTK.

6.
Neuroscience ; 465: 116-127, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33838290

ABSTRACT

To investigate the role of the exchange protein directly activated by cAMP (Epac) signaling pathway in inner ear hair cell damage and apoptosis after noise exposure, we analyzed the expression level of Epac1 in a rat model of noise-induced hearing loss (NIHL), based on rat exposure to a 4-kHz and 106-dB sound pressure level (SPL) for 8 h. Loss of outer hair cells (OHCs), mitochondrial lesions, and hearing loss were examined after treatment with the Epac agonist, 8-CPT, or the Epac inhibitor, ESI-09. The effects of 8-CPT and ESI-09 on cell proliferation and apoptosis were examined by CCK-8 assays, holographic microscopy imaging, and Annexin-V FITC/PI staining in HEI-OC1 cells. The effects of 8-CPT and ESI-09 on Ca2+ entry were evaluated by confocal Ca2+ fluorescence measurement. We found that the expression level of Epac1 was significantly increased in the cochlear tissue after noise exposure. In NIHL rats, 8-CPT increased the loss of OHCs, mitochondrial lesions, and hearing loss compared to control rats, while ESI-09 produced the opposite effects. Oligomycin was used to induce HEI-OC1 cell damage in vitro. In HEI-OC1 cells treated with oligomycin, 8-CPT and ESI-09 increased and reduced cell apoptosis, respectively. Moreover, 8-CPT promoted Ca2+ uptake in HEI-OC1 cells, while ESI-09 inhibited this process. In conclusion, our data provide strong evidence that the Epac1 signaling pathway mediates early pathological damage in NIHL, and that Epac1 inhibition protects from NIHL, identifying Epac1 as a new potential therapeutic target for NIHL.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Apoptosis , Cochlea , Hair Cells, Auditory, Outer , Rats , Signal Transduction
7.
Can J Physiol Pharmacol ; 99(10): 1079-1087, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33915055

ABSTRACT

Chronic cerebral hypoperfusion (CCH), as a critical factor of chronic cerebrovascular diseases, has greatly influenced the health of patients with vascular dementia. Vitexin, a flavone C-glycoside (apigenin-8-C-ß-D-glucopyranoside) that belongs to the flavone subclass of flavonoids, has been shown to possess antioxidant and anti-ischemic properties; however, the putative protective effects of vitexin on the CCH need further investigation. In the current study, the role of vitexin and its underlying mechanism were investigated with permanent bilateral common carotid artery occlusion (2VO) in rats as well as mouse hippocampal neuronal (HT22) cells with oxygen and glucose deprivation/reoxygenation (OGD/R) injury model. The results demonstrated that vitexin improved cognitive dysfunction as well as alleviated pathological neuronal damage in hematoxylin plus eosin (HE) and TUNEL results. The decreased levels of exchange protein directly activated by cAMP 1 (Epac1), Epac2, Ras-associated protein 1 (Rap1), and phospho-extracellular signal-regulated kinase (p-ERK) were reversed by vitexin in rats with CCH. Furthermore, this study indicated that vitexin alleviated CCH-induced inflammation injuries by reducing the expression of NOD-like receptor 3 (NLRP3), caspase-1, interleukin 1ß (IL-1ß), IL-6, and cleaved caspase-3. In vitro, vitexin increased the expression of Epac1 and Epac2, decreased the activation of the NLRP3-mediated inflammation, and improved cell viability. Taken together, our findings suggest that vitexin can reduce the degree of the progressing pathological damage in the cortex and hippocampus and inhibit further deterioration of cognitive function in rats with CCH. Epac and NLRP3 can be regulated by vitexin in vivo and in vitro, which provides enlightenment for the protection of CCH injury.


Subject(s)
Apigenin/pharmacology , Cerebrovascular Disorders/drug therapy , Guanine Nucleotide Exchange Factors/metabolism , Hippocampus/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurons/drug effects , Animals , Cerebrovascular Circulation , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/pathology , Chronic Disease , Cognition Disorders/metabolism , Cognition Disorders/pathology , Cognition Disorders/prevention & control , Guanine Nucleotide Exchange Factors/genetics , Hippocampus/metabolism , Hippocampus/pathology , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neurons/metabolism , Neurons/pathology , Rats , Rats, Sprague-Dawley
8.
Biomed Pharmacother ; 124: 109923, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31986418

ABSTRACT

2,3,5,4,-Tetrahydroxystilbene-2-O-ß-d-glucoside (TSG) is the main active constituent of the traditional Chinese medicine, Polygonum multiflorum; it was discovered that the compound has various biological activities and medicinal value including anti-aging, antioxidative (via scavenging free radicals), antihypercholesterolemic, anti-atherosclerotic, anti-inflammatory, hepatoprotective, and anti-tumor effects. TSG aids in prevention and treatment of Alzheimer's disease. With its wide clinical application, its separation and purification has become a research hotspot. In this paper, the pharmacological action, extraction process, and application prospects of TSG were reviewed in order to provide references for further development of TSG.


Subject(s)
Fallopia multiflora/chemistry , Glucosides/isolation & purification , Stilbenes/isolation & purification , Animals , Glucosides/pharmacology , Humans , Medicine, Chinese Traditional , Stilbenes/pharmacology
9.
Biomed Pharmacother ; 124: 109849, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31972356

ABSTRACT

Vitexin (VT) is a main bioactive flavonoid compound derived from the dried leaf of hawthorn (Crataegus pinnatifida), a widely used Chinese traditional folk medicine. Recent studies have shown that vitexin presents cardioprotective effects in vivo and in vitro. Mitochondrial dysfunction is a salient feature of myocardial ischemia/reperfusion (I/R) injury (MIRI), but the potential mechanism is still unclear. This study investigated the cardioprotective effect of vitexin against MIRI and its possible mechanism. Isolated SD rat hearts were subjected to MIRI in a Langendorff perfusion system, and H9c2 cells were subjected to hypoxia/reoxygenation (H/R) in vitro. Ex vivo experiments showed improved left ventricular function and reduced infarct size in the vitexin group. Transmission electron microscopy showed that I/R caused outer mitochondrial membrane rupture, cristae disappearance and vacuolation, while vitexin reduced mitochondrial damage and ultimately reduced cardiomyocyte apoptosis. In vitro, vitexin protected H9c2 cells from H/R-induced mitochondrial dysfunction, significantly reducing ROS levels; improving mitochondrial activity, mitochondrial membrane potential and ATP content; markedly increasing MFN2 expression and reducing the recruitment of Drp1 in mitochondria. These results suggest a new protective mechanism of vitexin for ischemic heart disease treatment.


Subject(s)
Apigenin/pharmacology , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Myocardial Reperfusion Injury/drug therapy , Animals , Apoptosis/drug effects , Cell Line , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
10.
Article in English | MEDLINE | ID: mdl-31379960

ABSTRACT

Tetrahydroxystilbene glucoside (TSG) is the active ingredient extracted from the traditional Chinese medicine Fallopia multiflora, which has extensive pharmacological activities. The current study aimed to observe the neuroprotective mechanism of TSG in the ischemia/reperfusion (I/R) brain injury-induced apoptosis and autophagy from the point of view of oxidative stress (OS). The middle cerebral artery occlusion (MCAO) model was prepared through the suture-occluded method, and TSG was administered through tail vein injection at the time of reperfusion at the doses of 3.0, 6.0, and 12.0 mg/kg. Compared with sham group, the neurological score in I/R mice was increased (P<0.05), along with remarkably elevated cerebral infarct volume (P<0.05); while TSG administration could reduce the neurological score and cerebral infarct volume (P<0.05) and improve the neuronal damage in ischemic cortex and hippocampus (P<0.05). The expression of NOX4, activated caspase-3(9), and Beclin 1 (P<0.05), as well as the LC3BII/I ratio, had been markedly elevated (P<0.05), while TSG administration could effectively suppress the expression of the above-mentioned proteins (P<0.05). In conclusion, TSG shows obvious protection against brain injury in I/R mice, and its mechanism may be related to suppressing the NADPH-induced OS and reducing neuronal apoptosis as well as autophagy.

11.
Am J Transl Res ; 10(3): 1012-1021, 2018.
Article in English | MEDLINE | ID: mdl-29636890

ABSTRACT

AIM: This study aimed to investigate the protective effects of paeoniflorin (PAE) on radiation-induced hepatic fibrosis in a rat model. METHODS: Fifty healthy male Sprague-Dawley rats were randomly assigned to normal control group, hepatic fibrosis group, and PAE treatment groups. X-ray exposure was employed to establish radiation-induced hepatic fibrosis model. PAE was administered once daily, and rats were sacrificed at week 26 after irradiation. The liver histopathology was evaluated under a light microscope after HE staining and Masson staining. Meanwhile, the protein expression of transforming growth factor-beta 1 (TGF-ß1), Smad3/4 and Smad7 was detected by immunohistochemistry. RESULTS: Radiation-induced liver damage and collagen deposition were observed in the model group as compared to normal control group, but PAE treatment significantly attenuated the liver injury and reduce collagen deposition (P<0.05 or 0.01). The hepatic hydroxyproline content and serum levels of TGF-ß1, hyaluronic acid, ro-collagen type III and laminin markedly increased in model group as compared to control group (P<0.01), but they decreased dramatically after PAE treatment. The expression of TGF-ß1, Smad3/4 and Smad7 in the liver increased significantly in model group as compared to control group (P<0.01), and PAE could down-regulate the expression of Smad3/4 and up-regulate Smad7 expression (P<0.05 or 0.01). The activities of serum amino-transferase and aspartate aminotransferase were significantly higher in hepatic fibrosis group than in normal control group, but PAE treatment markedly reduced them (P<0.05). CONCLUSION: PAE can inhibit the radiation induced hepatic fibrosis via regulating TGF-ß1/Smads signaling pathway.

12.
Zhongguo Zhong Yao Za Zhi ; 42(7): 1390-1394, 2017 Apr.
Article in Chinese | MEDLINE | ID: mdl-29052404

ABSTRACT

To discuss the effects of total glucosides from white paeony on preventing and treating radioactive liver damage, and explore its possible mechanisms. Thirty-six patients with primary hepatic carcinoma from 105th Hospital of Chinese PLA were treated with 3-dimensional conformal radiotherapy and randomly divided into simple irradiation group, total glucosides from white paeony group, and control group. The levels of AST, ALT, HA, LN, PCⅢ, CIV and TGF-ß1 in serum of various groups were determined by using ELISA method. As compared with the simple irradiation group and control group, total glucosides from white paeony could obviously decrease the levels of AST, ALT, HA, LN, PCⅢ, CIV and TGF-ß1(P<0.05, P<0.01). The results showed that the total glucosides from white paeony could effectively prevent and treat radioactive liver damage, and its mechanism might be associated with decreasing the levels of TGF-ß1, and inhibiting the synthesis of collagen synthesis.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Glucosides/pharmacology , Liver/radiation effects , Paeonia/chemistry , Radiation Injuries/drug therapy , Humans , Liver/drug effects , Transforming Growth Factor beta1/blood , Treatment Outcome
13.
Oncotarget ; 8(14): 22550-22562, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28186980

ABSTRACT

Obesity increases cancer risk including breast cancer (BC). However, the direct regulatory mechanisms by which obesity promotes BC progression remain largely unknown. We show that lysophosphatidic acid/protein kinase D1 (LPA/PKD-1)-CD36 signaling is a bona fide breast cancer promoter via stimulating microvascular remodeling in chronic diet-induced obesity (DIO). We observed that the growth of an estrogen receptor (ER) positive breast cancer was markedly increased when compared to the lean control, and specifically accompanied by increased microvascular remodeling in a syngeneic BC model in female DIO mice. The tumor neovessels in DIO mice demonstrated elevated levels of alpha smooth muscle actin (α-SMA), vascular endothelial growth factor receptor 2 (VEGFR 2) and endothelial differentiation gene 2/LPA receptor1 (Edg2/LPA1), enhanced PKD-1 phosphorylation, and reduced CD36 expression. Tumor associated endothelial cells (TAECs) exposed to LPA demonstrated sustained nuclear PKD-1 phosphorylation, and elevated mRNA levels of ephrin B2, and reduced mRNA expression of CD36. TAEC proliferation also increased in response to LPA/PKD-1 signaling. These studies suggest that the LPA/PKD-1-CD36 signaling axis links DIO to malignant progression of BC via stimulation of de novo tumor arteriogenesis through arteriolar remodeling of microvasculature in the tumor microenvironment. Targeting this signaling axis could provide an additional novel therapeutic strategy.


Subject(s)
Breast Neoplasms/metabolism , CD36 Antigens/metabolism , Endothelium, Vascular/metabolism , Lysophospholipids/metabolism , Obesity/metabolism , Protein Kinase C/metabolism , Vascular Remodeling , Animals , Breast Neoplasms/epidemiology , CD36 Antigens/genetics , Carcinogenesis , Cell Proliferation , Cells, Cultured , Diet , Disease Models, Animal , Endothelium, Vascular/pathology , Female , Humans , Mice , Mice, Inbred C57BL , Obesity/epidemiology , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Risk , Signal Transduction
14.
Pak J Pharm Sci ; 29(5): 1473-1482, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27731799

ABSTRACT

We and others have shown that Astragalus extract (AE) regulates various cellular processes including inflammation and apoptosis. It remains elusive whether and how AE modulates apoptosis in gastric cancer cells in vitro and in vivo. The objective of this study is to determine the effects and mechanisms of AE on the proliferation and apoptosis of human gastric cancer SGC-7901 cells and on tumor growth in orthotopic transplantation gastric tumor model in nude mice. Human gastric adenocarcinoma SGC-7901 cells and nude mice implanted with gastric cancer cells were treated with different concentration of AE and 5-fluorouracil as control. Cellular proliferation, apoptosis and tumor growth as well as interleukin (IL)-6/signal transducer and activator of transcription (Stat) 3 signals pathway were determined. We found that AE inhibited proliferation but caused apoptosis in human gastric cancer cells. Furthermore, the tumor growth and volume were reduced by AE administration in nude mice implanted with gastric cancer cells. In addition, treatments with AE decreased the expression of Bcl-2 proteins, whereas the expression of Bax was increased after AE treatment in tumor tissues of nude mice transplanted with human gastric cancer cells. This was associated with AE-mediated reduction of IL-6, phosphorylated Stat3, survivin and vascular endothelial growth factor. Overall, AE enhances apoptosis in gastric cancer cells in vitro and in vivo, which is associated with decreased activation of IL-6/Stat3 signals.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Stomach Neoplasms/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Astragalus Plant/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Inhibitor of Apoptosis Proteins/metabolism , Interleukin-6/metabolism , Male , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , Proto-Oncogene Proteins c-bcl-2/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Survivin , Tumor Burden , Vascular Endothelial Growth Factor A/metabolism , Xenograft Model Antitumor Assays
15.
Am J Transl Res ; 8(8): 3319-28, 2016.
Article in English | MEDLINE | ID: mdl-27648122

ABSTRACT

PURPOSE: The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. METHODS: A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. RESULTS: Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. CONCLUSIONS: Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease.

16.
Am J Transl Res ; 8(2): 911-21, 2016.
Article in English | MEDLINE | ID: mdl-27158378

ABSTRACT

Exact mechanism of cerebral ischemic stroke remains unclear. The calcium-sensing receptor (CaSR), a G-protein coupled receptor, has been reported to participate in the pathology of myocardial ischemia-reperfusion (I/R) injury and myocardial hypertrophy. Nevertheless, only a limited number of studies have been conducted to investigate the role of CaSR in cerebral ischemic stroke. This study was to investigate the effect of CaSR activation on cerebral ischemic stroke. Male adult Kunming mice were subjected to 2-h focal cerebral ischemia followed by 22-h reperfusion. Then, the brain was collected, and the expression of CaSR, JNK, p38, Bcl-2, and Bax was detected by Western blot assay. The morphology of neurons in the brain was evaluated by HE staining. Neurological function was scored, and the infarct volume was determined by TTC (triphenyltetrazolium chloride) staining. Results showed that ischemia/reperfusion (I/R) increased CaSR expression and induced neuronal apoptosis in the brain. Gadolinium trichloride (GdCl3), an agonist of CaSR, further deteriorated neurological dysfunction, increased infarct volume, enhanced CaSR expression, and promoted neuronal apoptosis. In addition, GdCl3 unregulated expression of Bax, p-JNK, and p-p38, and down-regulated Bcl-2 expression during I/R, which were attenuated by NPS2390, an inhibitor of CaSR. In conclusion, the CaSR activation promotes apoptosis in focal cerebral I/R in mice, which may be related to the activation of JNK/p38 MAPK signalling pathway. Targeting CaSR may be a novel strategy for the prevention and treatment of cerebral ischemic stroke.

17.
Front Pharmacol ; 7: 514, 2016.
Article in English | MEDLINE | ID: mdl-28082900

ABSTRACT

The increasing prescription of opioids is fueling an epidemic of addiction and overdose deaths. Morphine is a highly addictive drug characterized by a high relapse rate - even after a long period of abstinence. Serotonin (5-HT) neurotransmission participates in the development of morphine dependence, as well as the expression of morphine withdrawal. In this study, we examined the effect of blockade of 5-HT2A receptors (5-HT2ARs) on morphine-induced behavioral sensitization and withdrawal in male mice. 5-HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) suppressed acute morphine (5.0 mg/kg, s.c.)-induced increase in locomotor activity. Mice received morphine (10 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of morphine (10 mg/kg) was administered to induce the expression of behavioral sensitization. MDL 11,939 (0.5 mg/kg, i.p.) pretreatment suppressed the expression of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. MDL 11,939 (0.5 mg/kg, i.p.) prevented naloxone-precipitated withdrawal in morphine-dependent mice on day 7. Moreover, chronic morphine treatment increased 5-HT2AR protein level and decreased the phosphorylation of extracellular signal-regulated kinases in the prefrontal cortex. Together, these results by the first time demonstrate that 5-HT2ARs modulate opioid dependence and blockade of 5-HT2AR may represent a novel strategy for the treatment of morphine use disorders. HIGHLIGHTS: (i)Blockade of 5-HT2A receptors suppresses the expression of morphine-induced behavioral sensitization.(ii)Blockade of 5-HT2A receptors suppresses naloxone-precipitated withdrawal in morphine-treated mice.(iii)Chronic morphine exposure induces an increase in 5-HT2A receptor protein level and a decrease in ERK protein phosphorylation in prefrontal cortex.

18.
Neuropharmacology ; 101: 246-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26432939

ABSTRACT

Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT(2C) receptor (5-HT(2C)R) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT(2C)R agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT(2C)R activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT(2C)R agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT(2C)R antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT(2C)R protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT(2C)R can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT(2C)R may represent a new avenue for the treatment of opioid addiction.


Subject(s)
Morphine Dependence/complications , Naloxone/therapeutic use , Narcotic Antagonists/therapeutic use , Receptor, Serotonin, 5-HT2C/metabolism , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/etiology , Aminopyridines/pharmacology , Analgesics, Opioid/toxicity , Animals , Benzazepines/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Interactions , Indoles/pharmacology , Locomotion/drug effects , Male , Mice , Mice, Inbred Strains , Morphine/toxicity , Reaction Time/drug effects , Serotonin Antagonists/pharmacology , Time Factors
19.
J Neuroinflammation ; 12: 246, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26715049

ABSTRACT

BACKGROUND: Acid-sensing ion channels (ASICs) are cation channels which were activated by extracellular acidosis and involved in various physiological and pathological processes in the nervous system. Inflammasome is a key component of the innate immune response in host against harmful and irritable stimuli. As the first discovered molecular platform, NLRP1 (nucleotide-binding oligomerization domain (NOD)-like receptor protein 1) inflammasome is expressed in neurons and implicated in many nervous system diseases such as brain injury, nociception and epilepsy. However, little is known about the effect of ASICs on NLRP1 inflammasome activation under acidosis. METHODS: The expression of inflammasome complex protein (NLRP1, ASC (apoptosis-associated speck-like protein containing a caspase-activating recruitment domain) and caspase-1), inflammatory cytokines (IL-1ß and IL-18), and apoptosis-related protein (Bax, Bcl-2, and activated caspase-3) was detected by Western blot. Large-conductance Ca(2+) and voltage-activated K(+) (BK) channel currents were recorded by whole-cell patch-clamp technology. Measurement of [K(+)] i was performed by fluorescent ion imaging system. Co-expression of ASICs and BK channels was determined by dual immunofluorescence. Cell viability was assessed by MTT and LDH kit. RESULTS: ASICs and BK channels were co-expressed in primary cultured cortical neurons. Extracellular acidosis increased the expression of NLRP1, ASC, caspase-1, IL-1ß, and IL-18. Further mechanistic studies revealed that acidosis-induced ASIC1a activation results in the increase of BK channel currents, with the subsequent K(+) efflux and a low concentration of intracellular K(+), which activated NLRP1 inflammasome. Furthermore, these effects of acidosis could be blocked by specific ASIC1a inhibitor PcTX1 and BK channel inhibitor IbTX. The data also demonstrated neutralization of NLRP1-protected cortical neurons against injury induced by extracellular acidosis. CONCLUSIONS: Our data showed that NLRP1 inflammasome could be activated by extracellular acidosis though ASIC-BK channel K(+) signal pathway and was involved in extracellular acidosis-induced cortical neuronal injury.


Subject(s)
Acid Sensing Ion Channels/metabolism , Acidosis/metabolism , Cerebral Cortex/metabolism , Extracellular Fluid/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Animals, Newborn , Cell Survival/physiology , Cells, Cultured , Inflammasomes/metabolism , Rats , Rats, Sprague-Dawley
20.
Neurosci Lett ; 607: 23-28, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26375926

ABSTRACT

Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction.


Subject(s)
Behavior, Animal/drug effects , Central Nervous System Stimulants/adverse effects , Heroin/adverse effects , Naloxone/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Substance Withdrawal Syndrome/metabolism , Adrenergic alpha-2 Receptor Agonists/pharmacology , Animals , Benzazepines/pharmacology , Clonidine/pharmacology , Male , Mice , Motor Activity/drug effects , Serotonin 5-HT2 Receptor Agonists/therapeutic use , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...