Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893545

ABSTRACT

Tetraploid oysters are artificially produced oysters that do not exist in nature. The successful breeding of 100% triploid oysters resolved the difficulties of traditional drug-induced triploids, such as the presence of drug residues and a low triploid induction rate. However, little is known concerning the biochemical composition and nutrient contents of such tetraploids. Therefore, we investigated compositional differences among diploid, triploid, and tetraploid Crassostrea gigas as well as between males and females of diploids and tetraploids. The findings indicated that glycogen, EPA, ∑PUFA, and omega-3 contents were significantly higher in triploid oysters than in diploids or tetraploids; tetraploid oysters had a significantly higher protein content, C14:0, essential amino acid, and flavor-presenting amino acid contents than diploids or triploids. For both diploid and tetraploids, females had significantly higher levels of glutamate, methionine, and phenylalanine than males but lower levels of glycine and alanine. In addition, female oysters had significantly more EPA, DHA, omega-3, and total fatty acids, a result that may be due to the fact that gonadal development in male oysters requires more energy to sustain growth, consumes greater amounts of nutrients, and accumulates more proteins. With these results, important information is provided on the production of C. gigas, as well as on the basis and backing for the genetic breeding of oysters.


Subject(s)
Amino Acids , Crassostrea , Diploidy , Fatty Acids , Tetraploidy , Triploidy , Animals , Crassostrea/genetics , Crassostrea/metabolism , Amino Acids/metabolism , Fatty Acids/metabolism , Fatty Acids/analysis , Female , Male
2.
Animals (Basel) ; 14(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891754

ABSTRACT

Over the years, oysters have faced recurring mass mortality issues during the summer breeding season, with Vibrio infection emerging as a significant contributing factor. Tubules of gill filaments were confirmed to be in the hematopoietic position in Crassostrea gigas, which produce hemocytes with immune defense capabilities. Additionally, the epithelial cells of oyster gills produce immune effectors to defend against pathogens. In light of this, we performed a transcriptome analysis of gill tissues obtained from C. gigas infected with Vibrio alginolyticus for 12 h and 48 h. Through this analysis, we identified 1024 differentially expressed genes (DEGs) at 12 h post-injection and 1079 DEGs at 48 h post-injection. Enrichment analysis of these DEGs revealed a significant association with immune-related Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To further investigate the immune response, we constructed a protein-protein interaction (PPI) network using the DEGs enriched in immune-associated KEGG pathways. This network provided insights into the interactions and relationships among these genes, shedding light on the underlying mechanisms of the innate immune defense mechanism in oyster gills. To ensure the accuracy of our findings, we validated 16 key genes using quantitative RT-PCR. Overall, this study represents the first exploration of the innate immune defense mechanism in oyster gills using a PPI network approach. The findings provide valuable insights for future research on oyster pathogen control and the development of oysters with enhanced antimicrobial resistance.

3.
Molecules ; 28(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836700

ABSTRACT

In this study, diploid, triploid, and tetraploid Crassostrea gigas samples were subjected to gas chromatography and ion mobility (GC-IMS) to identify and analyze volatile compounds and flavor fingerprints under conditions of high-temperature incubation. The GC-IMS technology identified a total of 54 volatile components in C. gigas. The contents of 1-octen-3-ol, butyl pentanoate, p-methyl anisole, and 2-methyl-2-hepten-6-one in male oysters were significantly higher than in females, while the contents of phenylacetaldehyde, benzaldehyde, 2-ethyl-3-methylpyrazine, 2-ethylfuran, and 2,4-hexadienal in female oysters were significantly higher than in males. The contents of non-3-en-2-one-M and 1-pentanol in diploids were significantly higher than in triploids and tetraploids, while the content of 2,4-hexadienal in tetraploids was significantly higher than in diploids and tetraploids. The contents of ethyl acetate, ethyl-2-butenoate, and butanal in tetraploids were significantly higher than those in diploids and triploids. The results of a principal components analysis showed that different samples were relatively independently clustered, allowing the ability to distinguish different oyster samples. The chemical fingerprints of volatile compounds of C. gigas with different ploidy and gender under high-temperature incubation were established, and the volatile substance contours of C. gigas were visualized. The results provide a reference for distinguishing the ploidy and gender of C. gigas under conditions of high-temperature incubation.


Subject(s)
Crassostrea , Animals , Male , Female , Crassostrea/genetics , Triploidy , Tetraploidy , Temperature
4.
Bioorg Med Chem ; 92: 117436, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37556911

ABSTRACT

Cervical cancer is one of the most common cancers that affects middle-aged women and the discovery of new drugs to aid clinical management is needed. As an important member of the protein arginine methyltransferases (PRMTs) family, PRMT1 catalyzes the methylation of protein arginine, which can influence multiple biological processes of cancer cells, such as activating epithelial-mesenchymal transformation (EMT) and acquiring resistance to apoptosis. Therefore, PRMT1 can be considered as a potential drug target for cervical cancer. In the current study, a new sub-binding pocket was discovered by molecular modeling, and by introducing a third substitute on the thiazole group to occupy this pocket, a series of compounds were designed and synthesized as potential PRMT1 inhibitors. Of these, two compounds (ZJG51 and ZJG58) exhibited significant inhibitory activities against PRMT1 without significantly inhibiting PRMT5. Both ZJG51 and ZJG58 displayed potent inhibitory effects on the proliferation of four cancer-derived cell lines and ZJG51 exerted relative selectivity against the cervical cancer cell line, HeLa. Further studies showed that ZJG51 inhibited migration and induce the apoptosis of HeLa cells. Mechanistically, ZJG51 significantly regulated PRMT1 related proteins, and indicated that the induction of apoptosis and inhibition of migration by ZJG51 may involve the activation of Caspase 9 and the inhibition of EMT, respectively. Molecular dynamic simulation and free energy calculation showed that ZJG51 can bind to PRMT1 stably and the binding mode was predicted. These data indicated that introducing the third substitute on the five-membered ring could be a future direction for structure-based optimization of PRMT1 inhibitors, and ZJG51 could be an important lead compound to inform the design of more potent inhibitors.


Subject(s)
Enzyme Inhibitors , Uterine Cervical Neoplasms , Female , Humans , Middle Aged , HeLa Cells , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Biphenyl Compounds , Uterine Cervical Neoplasms/drug therapy , Arginine , Protein-Arginine N-Methyltransferases/chemistry , Repressor Proteins/metabolism
5.
Molecules ; 28(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298950

ABSTRACT

In this study, GC-IMS was used to analyze the volatile component and flavor profiles of Crassostrea gigas individuals of different ploidy and gender. Principal component analysis was used to explore overall differences in flavor profiles, and a total of 54 volatile compounds were identified. The total volatile flavor contents in the edible parts of tetraploid oysters were significantly higher than in diploid and triploid oysters. The concentrations of ethyl (E)-2-butenoate and 1-penten-3-ol were significantly higher in triploid oysters than in diploid and tetraploid oysters. In addition, the volatile compounds propanoic acid, ethyl propanoate, 1-butanol, butanal, and 2-ethyl furan were significantly higher in females than in males. The volatile compounds p-methyl anisole, 3-octanone, 3-octanone, and (E)-2-heptenal were present in higher levels in male than in female oysters. Overall, different ploidy and gender of oysters are connected with different sensory characteristics, providing new insights for understanding the flavor characteristics of oysters.


Subject(s)
Crassostrea , Volatile Organic Compounds , Animals , Male , Female , Humans , Gas Chromatography-Mass Spectrometry/methods , Ion Mobility Spectrometry/methods , Tetraploidy , Triploidy , Ploidies , Volatile Organic Compounds/analysis
6.
Dev Comp Immunol ; 143: 104677, 2023 06.
Article in English | MEDLINE | ID: mdl-36870582

ABSTRACT

Triploid oysters have provided the oyster industry with many benefits, such as fast growth rates, meat quality improvement, and increased oyster production and economic benefits, since the first report on triploid oysters was published. The development of polyploid technology has remarkably increased the output of triploid oysters to meet the increasing demand of consumers for Crassostrea gigas in the past decades. At present, research on triploid oyster has mainly focused on breeding and growth, but studies on the immunity of triploid oysters are limited. According to recent reports, Vibrio alginolyticus is a highly virulent strain that can cause disease and death in shellfish, shrimp, as well as serious economic losses. V. alginolyticus may be a reason why oysters die during summer. Therefore, using V. alginolyticus to explore the resistance and immune defense mechanisms of triploid oysters against pathogens presents practical significance. Transcriptome analysis of gene expression was performed in triploid C. gigas at 12 and 48 h after infection with V. alginolyticus, and the respective 2257 and 191 differentially expressed genes (DEGs) were identified. The results of GO and KEGG enrichment analyses showed that multiple significantly enriched GO terms and KEGG signaling pathways are associated with immunity. A protein-protein interaction network was constructed to investigate the interaction relationship of immune-related genes. Finally, we verified the expression situation of 16 key genes using quantitative RT-PCR. This study is the first to use the PPI network in exploring the immune defense mechanism of triploid C. gigas blood to fill the gap in the immune mechanism of triploid oysters and other mollusks, and provide valuable reference for future triploid farming and pathogen prevention and control.


Subject(s)
Crassostrea , Vibrio , Animals , Crassostrea/genetics , Vibrio alginolyticus , Protein Interaction Maps , Triploidy , Gene Expression Profiling
7.
Molecules ; 27(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500701

ABSTRACT

As a major public health problem, the prevalence of Acinetobacter baumannii (A. baumannii) infections in hospitals due to the pathogen's multiple-antibiotic resistance has attracted extensive attention. We previously reported a series of 1,3-diamino-7H-pyrrolo[3,2-f]quinazoline (PQZ) compounds, which were designed by targeting Escherichia coli dihydrofolate reductase (ecDHFR), and exhibited potent antibacterial activities. In the current study, based on our molecular-modeling study, it was proposed that PQZ compounds may function as potent A. baumannii DHFR (abDHFR)-inhibitors as well, which inspired us to consider their anti-A. baumannii abilities. We further found that three PQZ compounds, OYYF-171, -172, and -175, showed significant antibacterial activities against A. baumannii, including multidrug-resistant (MDR) strains, which are significantly stronger than the typical DHFR-inhibitor, trimethoprim (TMP), and superior to, or comparable to, the other tested antibacterial agents belonging to ß-lactam, aminoglycoside, and quinolone. The significant synergistic effect between the representative compound OYYF-171 and the dihydropteroate synthase (DHPS)-inhibitor sulfamethoxazole (SMZ) was observed in both the microdilution-checkerboard assay and time-killing assay, which indicated that using SMZ in combination with PQZ compounds could help to reduce the required dosage and forestall resistance. Our study shows that PQZ is a promising scaffold for the further development of folate-metabolism inhibitors against MDR A. baumannii.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Folic Acid Antagonists , Humans , Quinazolines/pharmacology , Microbial Sensitivity Tests , Acinetobacter Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Folic Acid Antagonists/pharmacology , Tetrahydrofolate Dehydrogenase , Drug Resistance, Multiple, Bacterial
8.
Front Chem ; 10: 888727, 2022.
Article in English | MEDLINE | ID: mdl-35755248

ABSTRACT

Protein arginine methyltransferase 1 (PRMT1) can catalyze the protein arginine methylation by transferring the methyl group from S-adenosyl-L-methionine (SAM) to the guanidyl nitrogen atom of protein arginine, which influences a variety of biological processes including epithelial-mesenchymal transition (EMT) and EMT-mediated mobility of cancer cells. The upregulation of PRMT1 is involved in a diverse range of cancer, such as lung cancer, and there is an urgent need to develop novel and potent PRMT1 inhibitors. In this article, a series of 2,5-substituted furan derivatives and 2,4-substituted thiazole derivatives were designed and synthesized by targeting at the substrate arginine-binding site on PRMT1, and 10 compounds demonstrated significant inhibitory effects against PRMT1. Among them, the most potent inhibitor, compound 1r (WCJ-394), significantly affected the expression of PRMT1-related proteins in A549 cells and downregulated the expression of mesenchymal markers, by which WCJ-394 inhibited the TGF-ß1-induced EMT in A549 cells and prevented the cancer cell migration. The current study demonstrated that WCJ-394 was a potent PRMT1 inhibitor, which could be used as the leading compound for further drug discovery.

9.
Eur J Med Chem ; 228: 113979, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34802838

ABSTRACT

The shortage of new antibiotics makes infections caused by gram-negative (G-) bacteria a significant clinical problem. The key enzymes involved in folate biosynthesis represent important targets for drug discovery, and new antifolates with novel mechanisms are urgently needed. By targeting to dihydrofolate reductase (DHFR), a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (PQZ) compounds were designed, and exhibited potent antibacterial activities in vitro, especially against multi-drug resistant G- strains. Multiple experiments indicated that PQZ compounds contain a different molecular mechanism against the typical DHFR inhibitor, trimethoprim (TMP), and the thymidylate synthase (TS) was identified as another potential but a relatively weak target. A significant synergism between the representative compound, OYYF-175, and sulfamethoxazole (SMZ) was observed with a strong cumulative and significantly bactericidal effect at extremely low concentrations (2 µg/mL for SMZ and 0.03 pg/mL for OYYF-175), which could be resulted from the simultaneous inhibition of dihydropteroate synthase (DHPS), DHFR and TS. PQZ compounds exhibited therapeutic effects in a mouse model of intraperitoneal infections caused by Escherichia coli (E. coli). The co-crystal structure of OYYF-175-DHFR was solved and the detailed interactions were provided. The inhibitors reported represent innovative chemical structures with novel molecular mechanism of action, which will benefit the generation of new, efficacious bactericidal compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery , Folic Acid Antagonists/pharmacology , Folic Acid/metabolism , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enterobacteriaceae/drug effects , Folic Acid Antagonists/chemical synthesis , Folic Acid Antagonists/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Vancomycin-Resistant Enterococci/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...