Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Am J Cancer Res ; 13(8): 3686-3704, 2023.
Article in English | MEDLINE | ID: mdl-37693152

ABSTRACT

Although an increasing body of evidence supports the crucial role of the SEC24 Homolog D, COPII Coat Complex Component (SEC24D) gene in the initiation and progression of cancer, a comprehensive pan-cancer analysis of this gene is still lacking. In this study, we conducted an extensive investigation of SEC24D, aiming to elucidate its potential role and underlying mechanisms across multiple human tumors. Our analysis relied on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. To validate our findings, we employed RNA sequencing (RNA-seq), targeted bisulfite sequencing (bisulfite-seq) molecular techniques. Our findings revealed elevated mRNA (Messenger RNA) and protein levels of SEC24D in different tumor tissues. However, the up-regulation of SEC24D was significantly correlated with shorter overall survival (OS), metastasis, and various clinical parameters in esophageal cancer (ESCA), lung adenocarcinoma (LUAD), and kidney renal papillary cell carcinoma (KIRP). Expression validation analysis via RNA-seq and targeted bisulfite-seq analyses, further confirmed the higher expression of SEC24D in LUAD cancer cell lines as compared to normal controls. The DNA methylation level of SEC24D was found to be decreased in ESCA, LUAD, and KIRP samples. DNA methylation analysis via bisulfite-seq analysis also validate the lower promoter methylation level of SE24D in LUAD cell lines relative to controls. Moreover, we observed a significant association between the elevated expression of SEC24D and the levels of infiltrating cells, such as B cells, neutrophils, macrophages, CD8+ T cells, and CD4+ T cells. Analysis of SEC24-related genes revealed that "Protein processing in endoplasmic reticulum, SNARE interaction in vesicular transport, Legionellosis, Pathogenic Escherichia coli infection" were mainly involved in the functional mechanism of SEC24D in ESCA, LUAD, and KIRP. Moreover, we also suggested a few valuable drugs (Acetaminophen, Acteoside, Cyclosporine, Polydatin, Estradiol, Estradiol, Quercetin) for treating ESCA, LUAD, and KIRP patients with respect to overexpressed SEC24D. To summarize, this comprehensive pan-cancer study investigated the association between SEC24D expression and clinical parameters in ESCA, LUAD, KIRP. The study provides valuable insights for further exploring the functional and therapeutic aspects of SEC24D and underscores its predictive significance in the carcinogenesis and prognosis of these specific cancer types.

2.
Am J Cancer Res ; 13(6): 2572-2587, 2023.
Article in English | MEDLINE | ID: mdl-37424805

ABSTRACT

Due to the lack of sensitive biomarkers, cancer disease kill 9.6 million individuals each year around the globe. The present study aimed to explore the association between ELL Associated Factor 2 (EAF2) expression and its diagnostic and prognostic landscape across different human cancers using an in silico and in vitro approach. To achieve the defined goals of this study, we used the following online sources: UALCAN, KM plotter, TNMplot, cBioPortal, STRING, DAVID, MuTarget, Cytoscape, and CTD. In addition to this, we also used additional The Cancer Genome Atlas (TCGA) datasets via TIMER2, GENT2, and GEPIA to confirm the expression of EAF2 on additional cohorts. Finally, we performed RNA sequencing (RNA-seq) and targeted bisulfite sequencing (bisulfite-seq) techniques-based analysis using A549, ABC-1, EBC-1, LK-2 lung cancer cell lines, and MRC-9 normal control lung cell line for further validation of the results. On balance, EAF2 was elevated in 19 types of human cancers and its up-regulation was significantly correlated with shorter overall survival (OS), relapse-free survival (RFS), and metastasis in Liver Hepatocellular Carcinoma (LIHC) and Lung Squamous Cell Carcinoma (LUSC) patients. We further evaluated that EAF2 expression was also elevated across LIHC and LUSC patients belonging to different clinicopathological features. Through pathway analysis, EAF2 associations were observed with four important pathways. Moreover, some worth noticing correlations were also documented between EAF2 expression and its promoter methylation level, genetic alterations, other mutant genes, tumor purity, and different immune cells infiltration. The higher EAF2 expression contributes significantly to the tumorigenesis and metastasis of LIHC and LUSC. Therefore, it can be used as a common biomarker in these cancers.

3.
ACS Appl Mater Interfaces ; 15(29): 35525-35533, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37439786

ABSTRACT

Wearable temperature sensors with high sensitivity and stability hold great potential for human health monitoring. However, hydrogels, which are commonly used for wearable devices, often show poor thermal and electrical conductivity and are susceptible to dehydration and freezing. Herein, we developed a frost- and dehydration-resistive temperature sensor based on Fe2+/Ti2CTx/κ-carrageenan (CA)-polyacrylamide (PAM) hydrogel. The Fe2+ ions within the hydrogel existed in two forms: as free ions and bonded ions. The free Fe2+ ions could complex with water molecules, resulting in the improved resistance to dehydration and freezing, as well as enhanced ionic conductivity in the hydrogel. On the other hand, the remaining Fe2+ ions acted as linkers to form coordination bonds with the sulfate groups of CA chains, resulting in the greatly enhanced mechanical strength of the hydrogel. In addition, the Ti2CTx nanosheet-based fillers formed a well-defined porous laminar structure, which reduced the phonon scattering and improved the phonon adsorption within the hydrogel. The Fe2+/Ti2CTx/CA-PAM hydrogel sensor exhibited excellent temperature sensing performance including a good linearity (R2 = 0.998) within a broad working range (-10 to 60 °C), high resolution (0.1 °C), and good repeatability. Furthermore, the sensor was integrated into a wireless system for continuous monitoring of body temperature, demonstrating its potential in healthcare monitoring, electronic skins, and intelligent robots.

4.
Chem Commun (Camb) ; 59(64): 9730-9733, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37477418

ABSTRACT

Two-dimensional (2D) boron nanomaterials have received considerable attention due to their distinct physicochemical properties in contrast to bulk boron. However, the susceptibility to oxidation in air has limited their practical applications. In this study, we synthesize an environmentally stable bifunctionalized boron nanosheet via a wet chemical route. By lyophilization, we have hierarchically assembled the boron nanosheets into various well-ordered macroscopic forms, which exhibit unique structural features, such as stacking-induced nanochannels for proton transport. The resulting suprastructures show exceptionally high proton conductivity (∼90 mS cm-1 at 85 °C) and humidity sensitivity (response >40 000% at 97% RH). These findings demonstrate the immense potential of boron nanomaterials in electrochemical applications.

5.
Phys Chem Chem Phys ; 25(24): 16438-16445, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37306094

ABSTRACT

Although titanium-based MXenes have been widely reported for gas sensing, the effect of crystal stoichiometric variations on the sensing properties has been rarely reported. Herein, stoichiometric polymorphs of titanium carbide MXenes (i.e., Ti3C2Tx and Ti2CTx) loaded with Pd nanodots (NDs) prepared by photochemical reduction were investigated for room-temperature H2 sensing. Interestingly, we found that Pd/Ti2CTx exhibited greatly enhanced sensitivity to H2, along with faster response and recovery rates compared to Pd/Ti3C2Tx. The H2 adsorption induced resistance change in Pd/Ti2CTx was higher than that of Pd/Ti3C2Tx due to the more effective charge transfer at the heterointerface of Pd/Ti2CTx, which was confirmed by shifts of binding energies and theoretical calculation results. We hope this work could be helpful to design more high-performance MXene-based gas sensors.

6.
Materials (Basel) ; 15(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35897593

ABSTRACT

Iron tailing solid waste not only has a high annual output but also has a low comprehensive utilization rate. Low utilization rate of iron tailings seriously restricts the development of comprehensive utilization of solid waste. In order to prepare an iron tailings-based ternary solid waste admixture and to verify its application to concrete, first, the effect of solid waste synergy on the strength of an iron tailings-steel slag-desulfurization ash admixture (ISD) system was investigated. Second, the effect of chemical activator dosing on the strength of an ISD system was studied and the mechanism of chemical activator action on the ISD system was investigated by thermogravimetric analysis (TG-DTA) Then, the effect of this admixture on the strength of concrete was studied. Finally, the mechanism of the effect of this admixture on the strength of concrete was clarified by mercury intrusion porosimetry (MIP) and backscattering electron tests (BSE). The results showed that the 7 d and 28 d compressive strengths of the ISD admixture were significantly higher than those of iron tailings single admixture. The 7 d and 28 d compressive strengths of the ISD system reached 24.9 MPa and 36.1 Mpa, respectively, when the ratio of iron tailings:steel slag:desulfurization ash = 1:1:1. Na2SiO3 is suitable for the early strength agent of the ISD admixture, but the amount of admixture should not exceed 0.6% of the admixture. TG-DTA shows that Na2SiO3 is enhancing the early strength of the ISD system by promoting the consumption of Ca(OH)2 in the ISD system to produce C-S-H. However, in the late reaction of the ISD system, Na2SiO3 inhibits the late strength development of the ISD system by suppressing Ca(OH)2 production. Concrete with ISD dosing of 30% or less meets the C40 requirement. MIP and BSE show that ISD provides a filling effect to concrete, but also causes a reduction in the active reactants of concrete and the combined effect of microfilling and active effects affects the strength development of ISD concrete. This study provides a theoretical and scientific basis for the preparation of iron tailings-based ternary solid waste dopants, and, in addition, the study promotes the consumption of iron tailings solid waste and the development of multiple solid waste dopants.

7.
Small ; 18(26): e2202485, 2022 07.
Article in English | MEDLINE | ID: mdl-35633288

ABSTRACT

Mesenchymal stem cells (MSCs) have been recognized as one of the most promising pharmaceutical multipotent cells, and a key step for their wide application is to safely and efficiently regulate their activities. Various methods have been proposed to regulate the directional differentiation of MSCs during tissue regeneration, such as nanoparticles and metal ions. Herein, nanoscale zeolitic imidazolate framework-8 (ZIF-8), a Zn-based metal-organic framework, is modified to direct MSCs toward an osteoblast lineage. Specifically, ZIF-8 nanoparticles are encapsulated using stem cell membranes (SCMs) to mimic natural molecules and improve the biocompatibility and targeted ability toward MSCs. SCM/ZIF-8 nanoparticles adjust the sustained release of Zn2+ , and promote their specific internalization toward MSCs. The internalized SCM/ZIF-8 nanoparticles show excellent biocompatibility, and increase MSCs' osteogenic potentials. Moreover, RNA-sequencing results elucidate that the activated cyclic adenosine 3,5-monophosphate (cAMP)-PKA-CREB signaling pathway can be dominant in accelerating osteogenic differentiation. In vivo, SCM/ZIF-8 nanoparticles greatly promote the formation of new bone tissue in the femoral bone defect detected by 3D micro-CT, hematoxylin and eosin staining, and Masson staining after 4 weeks. Overall, the SCM-derived ZIF-8 nanostructures achieve the superior targeting ability, biocompatibility, and enhanced osteogenesis, providing a constructive design for tissue repair.


Subject(s)
Osteogenesis , Zeolites , Cell Differentiation , Cell Membrane , Stem Cells , Zeolites/chemistry
8.
Chem Commun (Camb) ; 58(37): 5586-5589, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35438117

ABSTRACT

A hydroxyl-functionalized boron nanosheet is developed as the filler material for the solid-state electrolyte (SSE) of lithium batteries. The nanosheet exhibits good oxidation resistance and thermal stability. Its composite SSE shows high ionic conductivity, and the resulting batteries present much enhanced capacities, rate capability and cycling performance, proving the electrochemical advances of the boron nanosheet.

9.
Adv Healthc Mater ; 11(12): e2102821, 2022 06.
Article in English | MEDLINE | ID: mdl-35182414

ABSTRACT

Although engineered nanoparticles loaded with specific growth factors are used to regulate differentiation of stem cells, the low loading efficiency and biocompatibility are still great challenges in tissue repair. A nature-inspired biomimetic delivery system with targeted functions is attractive for enhancing cell activity and controlling cell fate. Herein, a stem cell membrane (SCM)-wrapped dexamethasone (DEX)-loaded zeolitic imidazolate framework-8 (ZIF-8) is constructed, which integrates the synthetic nanomaterials with native plasma membrane, to achieve efficient DEX delivery and DEX-mediated bone repair. The DEX@ZIF-8-SCM enables high DEX loading capacity, modulates the sustained release, and facilitates the specific uptake of mesenchymal stem cells (MSCs), owing to the porous property of ZIF-8 and the innate targeting capability of SCM. The endocytosed DEX@ZIF-8-SCM shows high cytocompatibility and greatly enhances the osteogenic differentiation of MSCs. Furthermore, RNA-sequencing data reveal that the phosphoinositide 3-kinase (PI3K)-Akt signaling pathways are activated and dominantly involved in the accelerated osteogenesis. In the bone defect model, the administrated DEX@ZIF-8-SCM exerts excellent biocompatibility and effectively promotes bone regeneration. Overall, the SCM-derived biomimetic nanoplatform achieves targeted delivery, excellent biosafety, and enhanced osteogenic differentiation and bone repair, which provides a new and valid strategy for treating various tissue injuries.


Subject(s)
Metal-Organic Frameworks , Zeolites , Biomimetics , Cell Differentiation , Cells, Cultured , Dexamethasone , Osteogenesis , Phosphatidylinositol 3-Kinases
10.
Small ; 18(13): e2107236, 2022 04.
Article in English | MEDLINE | ID: mdl-35166031

ABSTRACT

Neural stem cells (NSCs) therapy is promising for treating neurodegenerative disorders and neural injuries. However, the limited in vitro expansion, spontaneous differentiation, and decrease in stemness obstruct the acquisition of high quantities of NSCs, restricting the clinical application of cell-based therapies and tissue engineering. This article reports a facile method of promoting NSCs expansion and maintaining stemness using wireless electrical stimulation triggered by piezoelectric nanomaterials. A nanofibrous membrane of poly L-lactic acid (PLLA) is prepared by electrostatic spinning, and the favorable piezoelectric property of PLLA facilitates the freeing of electrons after transformation. These self-powered electric signals generated by PLLA significantly enhance NSCs proliferation. Further, an undifferentiated cellular state is maintained in the NSCs cultured on the surfaces of PLLA nanofibers exposed to ultrasonic vibration. In addition, the neural differentiation potencies and functions of NSCs expanded by piezoelectric-driven localized electricity are not attenuated. Moreover, cell stemness can be maintained by wireless electric stimulation. Taken together, the electronic signals mediated by PLLA nanofibers facilitate NSCs proliferation. This efficient and simple strategy can maintain the stemness of NSCs during proliferation, which is essential for their clinical application, and opens up opportunities for the mass production of NSCs for use in cell therapy.


Subject(s)
Nanofibers , Neural Stem Cells , Cell Differentiation , Cell Proliferation , Lactic Acid , Polyesters , Tissue Engineering , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...