Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cancer Lett ; 590: 216801, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38479552

ABSTRACT

The mesenchymal subtype of glioblastoma (GBM) cells characterized by aggressive invasion and therapeutic resistance is thought to be dependent on cell-intrinsic alteration and extrinsic cellular crosstalk. Tumor-associated macrophages (TAMs) are pivotal in tumor progression, chemo-resistance, angiogenesis, and stemness maintenance. However, the impact of TAMs on the shifts in glioma stem cells (GSCs) states remains largely uncovered. Herein, we showed that the triggering receptor expressed on myeloid cells-1 (TREM1) preferentially expressed by M2-like TAMs and induced GSCs into mesenchymal-like states by modulating the secretion of TGFß2, which activated the TGFßR/SMAD2/3 signaling in GSCs. Furthermore, we demonstrated that TREM1 was transcriptionally regulated by HIF1a under the hypoxic environment and thus promoted an immunosuppressive type of TAMs via activating the TLR2/AKT/mTOR/c-MYC axis. Collectively, this study reveals that cellular communication between TAMs and GSCs through the TREM1-mediated TGFß2/TGFßR axis is involved in the mesenchymal-like transitions of GSCs. Our study provides valuable insights into the regulatory mechanisms between the tumor immune microenvironment and the malignant characteristics of GBM, which can lead to potential novel strategies targeting TAMs for tumor control.


Subject(s)
Neoplastic Stem Cells , Triggering Receptor Expressed on Myeloid Cells-1 , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/immunology , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Animals , Cell Line, Tumor , Signal Transduction , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/immunology , Glioma/pathology , Glioma/genetics , Glioma/metabolism , Glioma/immunology , Mice , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/immunology , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Neoplastic , Smad2 Protein/metabolism , Smad2 Protein/genetics
2.
Adv Sci (Weinh) ; 11(7): e2305620, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38087889

ABSTRACT

Glioblastoma (GBM) is a lethal cancer characterized by hypervascularity and necrosis associated with hypoxia. Here, it is found that hypoxia preferentially induces the actin-binding protein, Transgelin (TAGLN), in GBM stem cells (GSCs). Mechanistically, TAGLN regulates HIF1α transcription and stabilizes HDAC2 to deacetylate p53 and maintain GSC self-renewal. To translate these findings into preclinical therapeutic paradigm, it is found that sodium valproate (VPA) is a specific inhibitor of TAGLN/HDAC2 function, with augmented efficacy when combined with natural borneol (NB) in vivo. Thus, TAGLN promotes cancer stem cell survival in hypoxia and informs a novel therapeutic paradigm.


Subject(s)
Brain Neoplasms , Glioblastoma , Muscle Proteins , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylation , Brain Neoplasms/metabolism , Microfilament Proteins/metabolism , Hypoxia/metabolism , Neoplastic Stem Cells/metabolism
3.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36096529

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common malignant brain tumor with poor clinical outcomes. Immunotherapy has recently been an attractive and promising treatment of extracranial malignancies, however, most of clinical trials for GBM immunotherapy failed due to predominant accumulation of tumor-associated microglia/macrophages (TAMs). RESULTS: High level of LRIG2/soluble LRIG2 (sLRIG2) expression activates immune-related signaling pathways, which are associated with poor prognosis in GBM patients. LRIG2/sLRIGs promotes CD47 expression and facilitates TAM recruitment. Blockade of CD47-SIRPα interactions and inhibition of sLRIG2 secretion synergistically suppress GBM progression in an orthotropic murine GBM model. CONCLUSIONS: GBM cells with high level LRIG2 escape the phagocytosis by TAM via the CD47-SIRPα axis, highlighting a necessity for an early stage of clinical trial targeting LRIG2 and CD47-SIRPα as a novel treatment for patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Brain Neoplasms/pathology , CD47 Antigen/metabolism , Humans , Immunity, Innate , Macrophages , Membrane Glycoproteins/metabolism , Mice
4.
Theranostics ; 12(9): 4221-4236, 2022.
Article in English | MEDLINE | ID: mdl-35673564

ABSTRACT

Rationale: In the glioblastoma (GBM) microenvironment, tumor-associated macrophages (TAMs) are prominent components and facilitate tumor growth. The exact molecular mechanisms underlying TAMs' function in promoting glioma stem cells (GSCs) maintenance and tumor growth remain largely unknown. We found a candidate molecule, transforming growth factor beta-induced (TGFBI), that was specifically expressed by TAMs and extremely low in GBM and GSC cells, and meanwhile closely related to glioma WHO grades and patient prognosis. The exact mechanism of TGFBI linking TAM functions to GSC-driven tumor growth was explored. Methods: Western blot, quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), immunofluorescence (IF), immunohistochemistry staining (IHC) and public datasets were used to evaluate TGFBI origin and level in GBM. The response of GSCs to recombinant human TGFBI was assessed in vitro and orthotopic xenografts were established to investigate the function and mechanism in vivo. Results: M2-like TAMs infiltration was elevated in high-grade gliomas. TGFBI was preferentially secreted by M2-like TAMs and associated with a poor prognosis for patients with GBM. TGFBI promoted the maintenance of GSCs and GBM malignant growth through integrin αvß5-Src-Stat3 signaling in vitro and in vivo. Of clinical relevance, TGFBI was enriched in the serum and CSF of GBM patients and significantly decreased after tumor resection. Conclusion: TAM-derived TGFBI promotes GSC-driven tumor growth through integrin αvß5-Src-Stat3 signaling. High serum or CSF TGFBI may serve as a potential diagnostic and prognostic bio-index for GBMs.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/metabolism , Glioma/metabolism , Humans , Neoplastic Stem Cells/metabolism , Receptors, Vitronectin , STAT3 Transcription Factor/metabolism , Transforming Growth Factor beta/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages
5.
Int J Oncol ; 60(2)2022 Feb.
Article in English | MEDLINE | ID: mdl-35014687

ABSTRACT

Subsequently to the publication of the above article and a Corrigendum that addressed the issue of a misspelling of one of the authors' names (DOI: 10.3892/ijo.2019.4769; published online on April 2, 2019), the authors have subsequently discovered that Fig. 7 on p. 1079 contained a duplication in two of the panels that might cause the readers some confusion. The authors were able to re-examine the original data, repeat the experiment, and have decided to revise Fig. 7. The corrected version of Fig. 7, showing replacement data for the p-Akt and Cyclin D1 experiments, is shown on the next page. The authors confirm that these data continue to support the main conclusions presented in their paper, and are grateful to the Editor of International Journal of Oncology for allowing them this opportunity to publish a Corrigendum. They also apologize to the readership for any inconvenience caused. [the original article was published in International Journal of Oncology 10.3892/ijo.2018.4482].

6.
Front Immunol ; 11: 593219, 2020.
Article in English | MEDLINE | ID: mdl-33329583

ABSTRACT

Glioblastoma Multiforme (GBM) is the most common and aggressive form of intracranial tumors with poor prognosis. In recent years, tumor immunotherapy has been an attractive strategy for a variety of tumors. Currently, most immunotherapies take advantage of the adaptive anti-tumor immunity, such as cytotoxic T cells. However, the predominant accumulation of tumor-associated microglia/macrophages (TAMs) results in limited success of these strategies in the glioblastoma. To improve the immunotherapeutic efficacy for GBM, it is detrimental to understand the role of TAM in glioblastoma immunosuppressive microenvironment. In this review, we will discuss the roles of CD47-SIRPα axis in TAMs infiltration and activities and the promising effects of targeting this axis on the activation of both innate and adaptive antitumor immunity in glioblastoma.


Subject(s)
Antigens, Differentiation/metabolism , CD47 Antigen/metabolism , Glioblastoma/etiology , Glioblastoma/metabolism , Immune Checkpoint Proteins/metabolism , Immunity, Innate , Receptors, Immunologic/metabolism , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunity, Innate/drug effects , Molecular Targeted Therapy , Tumor Microenvironment
8.
Cancer Gene Ther ; 27(12): 878-897, 2020 12.
Article in English | MEDLINE | ID: mdl-31988476

ABSTRACT

Epidermal growth factor receptor (EGFR) gene amplification and mutation occurs most frequently in glioblastoma (GBM). However, EGFR-tyrosine kinase inhibitors (TKIs), including gefitinib, have not yet shown clear clinical benefit and the underlying mechanisms remain largely unexplored. We previously demonstrated that LRIG2 plays a protumorigenic role and functions as a modulator of multiple oncogenic receptor tyrosine kinases (RTKs) in GBM. We therefore hypothesized that LRIG2 might mediate the resistance to EGFR inhibitor through modulating other RTK signaling. In this study, we report that LRIG2 is induced by EGFR inhibitor in gefitinib-treated GBM xenografts or cell lines and promotes resistance to EGFR inhibition by driving cell cycle progression and inhibiting apoptosis in GBM cells. Mechanistically, LRIG2 increases the secretion of growth-arrest specific 6 (GAS6) and stabilizes AXL by preventing its proteasome-mediated degradation, leading to enhancement of the gefitinib-induced activation of AXL and then reactivation of the gefitinib-inhibited SRC. Targeting LRIG2 significantly sensitizes the GBM cells to gefitinib, and inhibition of the downstream GAS6/AXL/SRC signaling abrogates LRIG2-mediated gefitinib resistance in vitro and in vivo. Collectively, our findings uncover a novel mechanism in resistance to EGFR inhibition and provide a potential therapeutic strategy to overcome resistance to EGFR inhibition in GBM.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Glycoproteins/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , src-Family Kinases/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Gefitinib/pharmacology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Male , Mice , Mice, Nude , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Up-Regulation/drug effects , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
9.
Front Oncol ; 9: 447, 2019.
Article in English | MEDLINE | ID: mdl-31245283

ABSTRACT

Glioblastoma is a highly lethal type of primary brain tumor that exhibits unrestricted growth and aggressive invasion capabilities, leading to a dismal prognosis despite a multitude of therapies. Multiple alterations in the expression level of genes and/or proteins have been identified in glioblastomas, including the activation of oncogenes and/or silencing of tumor-suppressor genes. Nevertheless, there are still no effective targeted therapies associated with these changes. In this study, we investigated the expression of human leucine-rich repeats and immunoglobulin-like domains protein 3 (LRIG3) in human glioma specimens through immunohistochemical analysis. The results showed that LRIG3 was weakly expressed in high-grade gliomas (WHO [World Health Organization] grades III and IV) compared with that in low-grade gliomas (WHO grade II). Survival analysis of these patients with glioma indicated that LRIG3 is an important prognostic marker for better survival. Moreover, we confirmed the existence of soluble ectodomain of LRIG3 (sLRIG3) in the cell culture supernatant, serum, and in tumor cystic fluid of patients with glioma. Molecular mechanistic investigation demonstrated that both LRIG3 and sLRIG3 inhibit the growth and invasion capabilities of GL15, U87, and PriGBM cells and tumor xenografts in nude mice through regulating the MET/phosphatidylinositol 3-kinase/Akt signaling pathway. Enzyme-linked immunosorbent assay confirmed the positive correlation between serum sLRIG3 protein levels and overall survival time in patients with high-grade gliomas. Taken together, our data for the first time demonstrate the existence of sLRIG3 and that both LRIG3 and sLRIG3 are potent tumor suppressors, which could be used as prognostic markers for better overall survival and therapeutic agents for glioblastoma.

10.
Int J Oncol ; 54(6): 2257, 2019 06.
Article in English | MEDLINE | ID: mdl-30942453

ABSTRACT

Following the publication of this article, the authors have realized that the name of the second author was misspelt: "Minghai Dong" should have appeared as "Minhai Dong". The correct information for the authors on this paper is presented above. The authors regret that this error made it into print, andapologize to the readership for any inconvenience caused. [the original article was published in International Journal of Oncology 53: 1069­1082, 2018; DOI: 10.3892/ijo.2018.4482].

11.
Int J Oncol ; 53(3): 1069-1082, 2018 09.
Article in English | MEDLINE | ID: mdl-30015847

ABSTRACT

The leucine­rich repeats and immunoglobulin­like domains (LRIG) gene family, comprising LRIG1, 2 and 3, encodes integral membrane proteins. It has been well established that LRIG1 negatively regulates multiple growth factor signaling pathways and is considered to be a tumor suppressor; however, the biological functions of LRIG2 remain largely unexplored. It was previously demonstrated that LRIG2 positively regulates epidermal growth factor receptor (EGFR) signaling, the most common aberrant receptor tyrosine kinase (RTK) signaling in glioblastoma multiforme (GBM), which promotes GBM growth. In the present study, the effect of LRIG2 on the proliferation of GBM cells was further addressed, as well as the possible mechanisms underlying the regulatory effect of LRIG2 on platelet­derived growth factor receptor ß (PDGFRß) signaling, another common oncogenic RTK signaling pathway in GBM. First, the expression levels of endogenous LRIG2 and PDGFRß were found to vary notably in human GBM, and the LRIG2 expression level was positively correlated with the expression level of PDGFRß. Furthermore, to the best of our knowledge, this is the first study to demonstrate that LRIG2 promoted the PDGF­BB­induced proliferation of GBM cells in vitro and in vivo through regulating the PDGFRß signaling­mediated cell cycle progression. Mechanistically, LRIG2 has the ability to physically interact with PDGFRß, promoting the total expression and the activation of PDGFRß, and enhancing its downstream signaling pathways of Akt and signal transducer and activator of transcription 3 and the effectors of key regulators of cell cycle progression, resulting in increased GBM cell proliferation. Collectively, these data indicated that LRIG2 may serve as a tumor promoter gene in gliomagenesis by positively regulating PDGFRß signaling, another important oncogenic RTK signaling pathway, in addition to the previously reported EGFR signaling in GBM modulated by LRIG2, and validated LRIG2 as a promising therapeutic target for the treatment of GBM characterized by multiple aberrant RTK signaling.


Subject(s)
Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Membrane Glycoproteins/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Adult , Aged , Animals , Brain Neoplasms/surgery , Carcinogenesis/pathology , Cell Cycle Checkpoints/genetics , Cell Division/genetics , Cell Line, Tumor , Cell Proliferation/genetics , ErbB Receptors/metabolism , Female , Gene Knockdown Techniques , Glioblastoma/pathology , Glioblastoma/surgery , Humans , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...