Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569112

ABSTRACT

Ethyl carbamate (EC), a 2A carcinogen produced during the fermentation of foods and beverages, primarily occurs in distilled spirits. Currently, most studies focus on strategies for EC mitigation. In the present research, we aimed to screen strains that can degrade EC directly. Here, we report two Candida ethanolica strains (J1 and J116), isolated from fermented grains, which can reduce EC concentrations directly. These two yeasts were grown using EC as the sole carbon source, and they grew well on different carbon sources. Notably, after immobilization with chitosan, the two strains degraded EC in Chinese Baijiu by 42.27% and 27.91% in 24 h (from 253.03 ± 9.89 to 146.07 ± 1.67 and 182.42 ± 5.05 µg/L, respectively), which was better than the performance of the non-immobilized strains. Furthermore, the volatile organic compound content, investigated using gas chromatography-mass spectrometry, did not affect the main flavor substances in Chinese Baijiu. Thus, the yeasts J1 and J116 may be potentially used for the treatment and commercialization of Chinese Baijiu.

2.
Foods ; 11(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35407026

ABSTRACT

Ethyl carbamate (EC), classified as a Group 2A carcinogen, is most abundant in the fermented foods, such as Cachaca, Shaoxing wine, and Chinese liquor (baijiu). Although biodegradation can reduce its concentration, a high ethanol concentration and acidic environment often limit its degradation. In the present study, a novel ethyl carbamate hydrolase (ECH) with high specificity to EC was isolated from Acinetobacter calcoaceticus, and its enzymatic properties and EC degradability were investigated. ECH was immobilized to resist extreme environmental conditions, and the flavor substance changes were explored by gas chromatography-mass spectrometry (GC/MS). The specific enzymatic activity of ECH was 68.31 U/mg. Notably, ECH exhibited excellent thermal stability and tolerance to sodium chloride and high ethanol concentration (remaining at 40% activity in 60% (v/v) ethanol, 1 h). The treatment of immobilized ECH for 12 h decreased the EC concentration in liquor by 71.6 µg/L. Furthermore, the immobilized ECH exerted less effect on its activity and on the flavor substances, which could be easily filtrated during industrial production.

SELECTION OF CITATIONS
SEARCH DETAIL
...