Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793795

ABSTRACT

Background:Streptococcus suis (S. suis) is a Gram-positive bacterium that causes substantial disease in pigs. S. suis is also an emerging zoonoses in humans, primarily in Asia, through the consumption of undercooked pork and the handling of infected pig meat as well as carcasses. The complexity of S. suis epidemiology, characterized by the presence of multiple bacterial serotypes and strains with diverse sequence types, identifies a critical need for a universal vaccine with the ability to confer cross-protective immunity. Highly conserved immunogenic proteins are generally considered good candidate antigens for subunit universal vaccines. Methods: In this study, the cross-protection of the sugar ABC transporter substrate-binding protein (S-ABC), a surface-associated immunogenic protein of S. suis, was examined in mice for evaluation as a universal vaccine candidate. Results: S-ABC was shown to be highly conserved, with 97% amino acid sequence identity across 31 S. suis strains deposited in GenBank. Recombinantly expressed S-ABC (rS-ABC) was recognized via rabbit sera specific to S. suis serotype 2. The immunization of mice with rS-ABC induced antigen-specific antibody responses, as well as IFN-γ and IL-4, in multiple organs, including the lungs. rS-ABC immunization conferred high (87.5% and 100%) protection against challenges with S. suis serotypes 2 and 9, demonstrating high cross-protection against these serotypes. Protection, albeit lower (50%), was also observed in mice challenged with S. suis serotype 7. Conclusions: These data identify S-ABC as a promising antigenic target within a universal subunit vaccine against S. suis.

2.
Viruses ; 15(9)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37766229

ABSTRACT

Japanese encephalitis (JE), found in pigs, is a serious mosquito-borne zoonotic infectious disease caused by the Japanese encephalitis virus (JEV). JEV is maintained in an enzootic cycle between mosquitoes and amplifying vertebrate hosts, mainly pigs and wading birds. It is transmitted to humans through the bite of an infected mosquito, allowing the pathogen to spread and cause disease epidemics. However, there is little research on JEV genotype variation in mosquitoes and pigs in Fujian province. Previous studies have shown that the main epidemic strain of JEV in Fujian Province is genotype III. In this study, a survey of mosquito species diversity in pig farms and molecular evolutionary analyses of JEV were conducted in Fujian, China, in the summer of 2019. A total of 19,177 mosquitoes were collected at four sites by UV trap. Four genera were identified, of which the Culex tritaeniorhynchus was the most common mosquito species, accounting for 76.4% of the total (14,651/19,177). Anopheles sinensi (19.25%, 3691/19,177) was the second largest species. High mosquito infection rateswere an important factor in the outbreak. The captured mosquito samples were milled and screened with JEV-specific primers. Five viruses were isolated, FJ1901, FJ1902, FJ1903, FJ1904, and FJ1905. Genetic affinity was determined by analyzing the envelope (E) gene variants. The results showed that they are JEV gene type I and most closely related to the strains SH-53 and SD0810. In this study, it was found through genetic evolution analysis that the main epidemic strain of JE in pig farms changed from gene type III to gene type I. Compared with the SH-53 and SD0810 strains, we found no change in key sites related to antigenic activity and neurovirulence of JEV in Fujian JEV and pig mosquito strains, respectively. The results of the study provide basic data for analyzing the genotypic shift of JEV in Fujian Province and support the prevention and control of JEV.

3.
J Virol ; 97(6): e0038223, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37289075

ABSTRACT

Palmitoylation of viral proteins is crucial for host-virus interactions. In this study, we examined the palmitoylation of Japanese encephalitis virus (JEV) nonstructural protein 2A (NS2A) and observed that NS2A was palmitoylated at the C221 residue of NS2A. Blocking NS2A palmitoylation by introducing a cysteine-to-serine mutation at C221 (NS2A/C221S) impaired JEV replication in vitro and attenuated the virulence of JEV in mice. NS2A/C221S mutation had no effect on NS2A oligomerization and membrane-associated activities, but reduced protein stability and accelerated its degradation through the ubiquitin-proteasome pathway. These observations suggest that NS2A palmitoylation at C221 played a role in its protein stability, thereby contributing to JEV replication efficiency and virulence. Interestingly, the C221 residue undergoing palmitoylation was located at the C-terminal tail (amino acids 195 to 227) and is removed from the full-length NS2A following an internal cleavage processed by viral and/or host proteases during JEV infection. IMPORTANCE An internal cleavage site is present at the C terminus of JEV NS2A. Following occurrence of the internal cleavage, the C-terminal tail (amino acids 195 to 227) is removed from the full-length NS2A. Therefore, it was interesting to discover whether the C-terminal tail contributed to JEV infection. During analysis of viral palmitoylated protein, we observed that NS2A was palmitoylated at the C221 residue located at the C-terminal tail. Blocking NS2A palmitoylation by introducing a cysteine-to-serine mutation at C221 (NS2A/C221S) impaired JEV replication in vitro and attenuated JEV virulence in mice, suggesting that NS2A palmitoylation at C221 contributed to JEV replication and virulence. Based on these findings, we could infer that the C-terminal tail might play a role in the maintenance of JEV replication efficiency and virulence despite its removal from the full-length NS2A at a certain stage of JEV infection.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Viral Nonstructural Proteins , Virus Replication , Animals , Mice , Cell Line , Cysteine/metabolism , Encephalitis Virus, Japanese/physiology , Lipoylation , Serine/metabolism , Viral Nonstructural Proteins/metabolism , Virulence
4.
Vaccines (Basel) ; 11(5)2023 May 20.
Article in English | MEDLINE | ID: mdl-37243109

ABSTRACT

Streptococcus suis (S. suis) is a bacterial pathogen of pigs that has a major animal health and economic impact on the pig industry. Bovine herpesvirus-4 (BoHV-4) is a new virus-based vaccine vector that has been used for the immunogenic delivery of antigens from a variety of pathogens. In the present study, two recombinant BoHV-4-based vectors were evaluated for their ability to induce immunity and protection against S. suis in a rabbit model. The GMD protein is a fusion protein consisting of multiple dominant B-cell epitopes ((B-cell dominant epitopes of GAPDH, MRP, and DLDH antigens) (BoHV-4/GMD)) and the second suilysin (SLY) (BoHV-4/SLY) from S. suis serotype 2 (SS2). Both GMD and SLY delivered by the BoHV-4 vectors were recognized by sera from SS2-infected rabbits. The vaccination of rabbits with the BoHV-4 vectors induced antibodies against SS2, as well as against additional S. suis serotypes, SS7 and SS9. However, sera from BoHV-4/GMD-vaccinated animals promoted a significant level of phagocytic activity by pulmonary alveolar macrophages (PAMs) against SS2, SS7, and SS9. In contrast, sera from rabbits immunized with BoHV-4/SLY induced PAM phagocytic activity against only SS2. In addition, BoHV-4 vaccines differed in the associated level of protection against lethal SS2 challenge, which ranged from high (71.4%) to low (12.5%) for BoHV-4/GMD and BoHV-4/SLY, respectively. These data suggest BoHV-4/GMD as a promising vaccine candidate against S. suis disease.

5.
Animals (Basel) ; 13(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36830506

ABSTRACT

S. suis is an important zoonotic pathogen from sick and recessive carrier pigs that poses a serious threat to animal husbandry production and public health. It usually causes horizontal transmission among pigs. The morbidity and mortality of this disease are very high. Human infection is caused through direct or indirect contact with sick pigs. The two large-scale outbreaks in China were due to the outbreak of S. suis on pig farms, which spread to human infection; thus, detecting S. suis in pig herds is crucial. At present, the commercial S. suis ELISA type 2 kits on the market can only detect single serotypes, high probabilities of interaction reactions, and biosafety risks when using inactivated S. suis as an antigen. Phosphate-3-glyceraldehyde dehydrogenase (GAPDH), muramidase-released protein (MRP), and dihydrolipoamide dehydrogenase (DLDH) are important S. suis type 2, S. suis type 7, and S. suis type 9 protective antigens. This study purified the GMD protein (B-cell-dominant epitopes of GAPDH, MRP, and DLDH antigens) and used a diverse combination of dominant epitopes of the multiple different antigens as coated antigens, improving the sensitivity and safety of the indirect ELISA experiments. An indirect ELISA method (GMD-ELISA) was developed for detecting S. suis antibodies. The antigen-antibody response was optimized using checkerboard titration. The results of testing using ELISA for Salmonella enterica (S. enterica), Escherichia coli (E. coli), Staphylococcus aureus (SA), and Streptococcus pyogenes (S. pyogenes) were all negative, indicating that this method had strong specificity. The results were still positive when the dilution ratio of S. suis-positive serum reached 1:6, 400, thus indicating that the method had high sensitivity. The results of the reproducibility assay for indirect ELISA showed that the intra-assay coefficient of variation and the inter-assay coefficient of variation were less than 10%, indicating that the method had good repeatability. We investigated the seroprevalence of S. suis in 167 serum samples collected in East China, and 33.5% of the samples were positive for antibodies against S. suis, indicating that the prevalence of S. suis is high in pig farms in Eastern China. The novel GMD-ELISA is a convenient, sensitive, and specific diagnostic method that provides technical support for rapid diagnosis and epidemiological investigation.

6.
Vet Sci ; 10(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36669049

ABSTRACT

Streptococcus suis is a significant pathogen in pigs and a newly emerging zoonotic agent in humans. The presence of multiple serotypes and strains with diversified sequence types in pig herds highlights the need for the identification of broadly cross-reactive universal vaccine antigen targets, capable of providing cross-protection against S. suis infection. Subunit vaccines based on the conserved proteins shared between different S. suis serotypes are potential candidates for such a universally protective vaccine. In the present study, phosphate ABC transporter ATP-binding protein PstB (PstB), an immunogenic protein of the S. suis bacterium, was expressed and purified, and then subjected to cross-protection evaluation in mice. The PstB protein showed nearly 100% amino acid similarity across a panel of 31 S. suis isolates representing different serotypes, which were collected from different countries. A recombinant PstB (rPstB) protein (S. suis serotype 2) was recognized by rabbit sera specific to this serotype, and induced high levels of IFN-γ and IL-4 in mice immunized with the recombinant protein. These cytokines are considered important for protection against S. suis infection. Immunization of mice with rPstB resulted in an 87.5% protection against challenge with S. suis serotype 2 and 9 strains, suggesting a high level of cross-protection for S. suis serotypes 2 and 9. A lower protection rate (62.5%) was observed in mice challenged with the S. suis serotype 7 strain. These data demonstrate that PstB is a promising target antigen for development as a component of a universal subunit vaccine against multiple S. suis serotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...