Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(16): e2319790121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593079

ABSTRACT

Bacteriophages (phages) play critical roles in modulating microbial ecology. Within the human microbiome, the factors influencing the long-term coexistence of phages and bacteria remain poorly investigated. Saccharibacteria (formerly TM7) are ubiquitous members of the human oral microbiome. These ultrasmall bacteria form episymbiotic relationships with their host bacteria and impact their physiology. Here, we showed that during surface-associated growth, a human oral Saccharibacteria isolate (named TM7x) protects its host bacterium, a Schaalia odontolytica strain (named XH001) against lytic phage LC001 predation. RNA-Sequencing analysis identified in XH001 a gene cluster with predicted functions involved in the biogenesis of cell wall polysaccharides (CWP), whose expression is significantly down-regulated when forming a symbiosis with TM7x. Through genetic work, we experimentally demonstrated the impact of the expression of this CWP gene cluster on bacterial-phage interaction by affecting phage binding. In vitro coevolution experiments further showed that the heterogeneous populations of TM7x-associated and TM7x-free XH001, which display differential susceptibility to LC001 predation, promote bacteria and phage coexistence. Our study highlights the tripartite interaction between the bacterium, episymbiont, and phage. More importantly, we present a mechanism, i.e., episymbiont-mediated modulation of gene expression in host bacteria, which impacts their susceptibility to phage predation and contributes to the formation of "source-sink" dynamics between phage and bacteria in biofilm, promoting their long-term coexistence within the human microbiome.


Subject(s)
Bacteriophages , Humans , Bacteriophages/physiology , Symbiosis , Bacteria/genetics
2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38366018

ABSTRACT

Saccharibacteria (formerly TM7) are a group of widespread and genetically diverse ultrasmall bacteria with highly reduced genomes that belong to Candidate Phyla Radiation, a large monophyletic lineage with poorly understood biology. Nanosynbacter lyticus type strain TM7x is the first Saccharibacteria member isolated from the human oral microbiome. With restrained metabolic capacities, TM7x lives on the surface of, and forms an obligate episymbiotic relationship with its bacterial host, Schaalia odontolytica strain XH001. The symbiosis allows TM7x to propagate but presents a burden to host bacteria by inducing stress response. Here, we employed super-resolution fluorescence imaging to investigate the physical association between TM7x and XH001. We showed that the binding with TM7x led to a substantial alteration in the membrane fluidity of XH001. We also revealed the formation of intracellular lipid droplets in XH001 when forming episymbiosis with TM7x, a feature that has not been reported in oral bacteria. The TM7x-induced lipid droplets accumulation in XH001 was confirmed by label-free Raman spectroscopy, which also unveiled additional phenotypical features when XH001 cells are physically associated with TM7x. Further exploration through culturing XH001 under various stress conditions showed that lipid droplets accumulation was a general response to stress. A survival assay demonstrated that the presence of lipid droplets plays a protective role in XH001, enhancing its survival under adverse conditions. In conclusion, our study sheds new light on the intricate interaction between Saccharibacteria and their host bacteria, highlighting the potential benefit conferred by TM7x to its host and further emphasizing the context-dependent nature of symbiotic relationships.


Subject(s)
Lipid Droplets , Microbiota , Humans , Bacteria , Symbiosis
3.
Cells ; 12(22)2023 11 20.
Article in English | MEDLINE | ID: mdl-37998399

ABSTRACT

Phototherapy, encompassing the utilization of both natural and artificial light, has emerged as a dependable and non-invasive strategy for addressing a diverse range of illnesses, diseases, and infections. This therapeutic approach, primarily known for its efficacy in treating skin infections, such as herpes and acne lesions, involves the synergistic use of specific light wavelengths and photosensitizers, like methylene blue. Photodynamic therapy, as it is termed, relies on the generation of antimicrobial reactive oxygen species (ROS) through the interaction between light and externally applied photosensitizers. Recent research, however, has highlighted the intrinsic antimicrobial properties of light itself, marking a paradigm shift in focus from exogenous agents to the inherent photosensitivity of molecules found naturally within pathogens. Chemical analyses have identified specific organic molecular structures and systems, including protoporphyrins and conjugated C=C bonds, as pivotal components in molecular photosensitivity. Given the prevalence of these systems in organic life forms, there is an urgent need to investigate the potential impact of phototherapy on individual molecules expressed within pathogens and discern their contributions to the antimicrobial effects of light. This review delves into the recently unveiled key molecular targets of phototherapy, offering insights into their potential downstream implications and therapeutic applications. By shedding light on these fundamental molecular mechanisms, we aim to advance our understanding of phototherapy's broader therapeutic potential and contribute to the development of innovative treatments for a wide array of microbial infections and diseases.


Subject(s)
Acne Vulgaris , Anti-Infective Agents , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use
4.
bioRxiv ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37732248

ABSTRACT

Saccharibacteria (formerly TM7) Nanosynbacter lyticus type strain TM7x exhibits a remarkably compact genome and an extraordinarily small cell size. This obligate epibiotic parasite forms a symbiotic relationship with its bacterial host, Schaalia odontolytica, strain XH001 (formerly Actinomyces odontolyticus strain XH001). Due to its limited genome size, TM7x possesses restrained metabolic capacities, predominantly living on the surface of its bacterial host to sustain this symbiotic lifestyle. To comprehend this intriguing, yet understudied interspecies interaction, a thorough understanding of the physical interaction between TM7x and XH001 is imperative. In this study, we employed super-resolution fluorescence imaging to investigate the physical association between TM7x and XH001. We found that the binding with TM7x led to a substantial alteration in the membrane fluidity of the host bacterium XH001. Unexpectedly, we revealed the formation of intracellular lipid droplets in XH001 when forming episymbiosis with TM7x, a feature not commonly observed in oral bacteria cells. The TM7x-induced LD accumulation in XH001 was further confirmed by label-free non-invasive Raman spectroscopy, which also unveiled additional phenotypical features when XH001 cells are physically associated with TM7x. Further exploration through culturing host bacterium XH001 alone under various stress conditions showed that LD accumulation was a general response to stress. Intriguingly, a survival assay demonstrated that the presence of LDs likely plays a protective role in XH001, enhancing its overall survival under adverse conditions. In conclusion, our study sheds new light on the intricate interaction between Saccharibacteria and its host bacterium, highlighting the potential benefit conferred by TM7x to its host, and further emphasizing the context-dependent nature of symbiotic relationships.

5.
Anal Chem ; 95(26): 9901-9913, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37310727

ABSTRACT

Candida albicans (C. albicans), a major fungal pathogen, causes life-threatening infections in immunocompromised individuals. Fluconazole (FLC) is recommended as first-line therapy for treatment of invasive fungal infections. However, the widespread use of FLC has resulted in increased antifungal resistance among different strains of Candida, especially C. albicans, which is a leading source of hospital-acquired infections. Here, by hyperspectral stimulated Raman scattering imaging of single fungal cells in the fingerprint window and pixel-wise spectral unmixing, we report aberrant ergosteryl ester accumulation in azole-resistant C. albicans compared to azole-susceptible species. This accumulation was a consequence of de novo lipogenesis. Lipid profiling by mass spectroscopy identified ergosterol oleate to be the major species stored in azole-resistant C. albicans. Blocking ergosterol esterification by oleate and suppressing sterol synthesis by FLC synergistically suppressed the viability of C. albicans in vitro and limited the growth of biofilm on mouse skin in vivo. Our findings highlight a metabolic marker and a new therapeutic strategy for targeting azole-resistant C. albicans by interrupting the esterified ergosterol biosynthetic pathway.


Subject(s)
Antifungal Agents , Candida albicans , Animals , Mice , Antifungal Agents/chemistry , Azoles/pharmacology , Azoles/metabolism , Spectrum Analysis, Raman , Esters/metabolism , Oleic Acid/metabolism , Microbial Sensitivity Tests , Fluconazole/metabolism , Ergosterol/pharmacology , Ergosterol/metabolism
6.
ISME J ; 17(6): 880-890, 2023 06.
Article in English | MEDLINE | ID: mdl-37005460

ABSTRACT

Host mucosal barriers possess an arsenal of defense molecules to maintain host-microbe homeostasis such as antimicrobial peptides and immunoglobulins. In addition to these well-established defense molecules, we recently reported small RNAs (sRNAs)-mediated interactions between human oral keratinocytes and Fusobacterium nucleatum (Fn), an oral pathobiont with increasing implications in extra-oral diseases. Specifically, upon Fn infection, oral keratinocytes released Fn-targeting tRNA-derived sRNAs (tsRNAs), an emerging class of noncoding sRNAs with gene regulatory functions. To explore potential antimicrobial activities of tsRNAs, we chemically modify the nucleotides of the Fn-targeting tsRNAs and demonstrate that the resultant tsRNA derivatives, termed MOD-tsRNAs, exhibit growth inhibitory effect against various Fn type strains and clinical tumor isolates without any delivery vehicle in the nanomolar concentration range. In contrast, the same MOD-tsRNAs do not inhibit other representative oral bacteria. Further mechanistic studies uncover the ribosome-targeting functions of MOD-tsRNAs in inhibiting Fn. Taken together, our work provides an engineering approach to targeting pathobionts through co-opting host-derived extracellular tsRNAs.


Subject(s)
MicroRNAs , RNA, Small Untranslated , Humans , Fusobacterium nucleatum/genetics , RNA, Transfer/genetics , MicroRNAs/genetics
7.
J Oral Microbiol ; 15(1): 2149448, 2023.
Article in English | MEDLINE | ID: mdl-36452179

ABSTRACT

Background: Endodontic infections are known to be caused by pathogenic bacteria. Numerous previous studies found that both Fusobacterium nucleatum and Enterococcus faecalis are associated with endodontic infections, with Fusobacterium nucleatum more abundant in primary infection while Enterococcus faecalis more abundant in secondary infection. Little is known about the potential interactions between different endodontic pathogens. Objective: This study aims to investigate the potential interaction between F. nucleatum and E. faecalis via phenotypical and genetic approaches. Methods: Physical and physiological interactions of F. nucleatum and E. faecalis under both planktonic and biofilm conditions were measured with co-aggregation and competition assays. The mechanisms behind these interactions were revealed with genetic screening and biochemical measurements. Results: E. faecalis was found to physically bind to F. nucleatum under both in vitro planktonic and biofilm conditions, and this interaction requires F. nucleatum fap2, a galactose-inhibitable adhesin-encoding gene. Under our experimental conditions, E. faecalis exhibits a strong killing ability against F. nucleatum by generating an acidic micro-environment and producing hydrogen peroxide (H2O2). Finally, the binding and killing capacities of E. faecalis were found to be necessary to invade and dominate a pre-established in vitro F. nucleatum biofilm. Conclusions: This study reveals multifaceted mechanisms underlying the physical binding and antagonistic interaction between F. nucleatum and E. faecalis, which could play a potential role in the shift of microbial composition in primary and secondary endodontic infections.

8.
J Virol ; 96(17): e0106322, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36000841

ABSTRACT

Bacteriophages (phages) are an integral part of the human oral microbiome. Their roles in modulating bacterial physiology and shaping microbial communities have been discussed but remain understudied due to limited isolation and characterization of oral phage. Here, we report the isolation of LC001, a lytic phage targeting human oral Schaalia odontolytica (formerly known as Actinomyces odontolyticus) strain XH001. We showed that LC001 attached to and infected surface-grown, but not planktonic, XH001 cells, and it displayed remarkable host specificity at the strain level. Whole-genome sequencing of spontaneous LC001-resistant, surface-grown XH001 mutants revealed that the majority of the mutants carry nonsense or frameshift mutations in XH001 gene APY09_05145 (renamed ltg-1), which encodes a putative lytic transglycosylase (LT). The mutants are defective in LC001 binding, as revealed by direct visualization of the significantly reduced attachment of phage particles to the XH001 spontaneous mutants compared that to the wild type. Meanwhile, targeted deletion of ltg-1 produced a mutant that is defective in LC001 binding and resistant to LC001 infection even as surface-grown cells, while complementation of ltg-1 in the mutant background restored the LC001-sensitive phenotype. Intriguingly, similar expression levels of ltg-1 were observed in surface-grown and planktonic XH001, which displayed LC001-binding and nonbinding phenotypes, respectively. Furthermore, the overexpression of ltg-1 failed to confer an LC001-binding and -sensitive phenotype to planktonic XH001. Thus, our data suggested that rather than directly serving as a phage receptor, ltg-1-encoded LT may increase the accessibility of phage receptor, possibly via its enzymatic activity, by cleaving the peptidoglycan structure for better receptor exposure during peptidoglycan remodeling, a function that can be exploited by LC001 to facilitate infection. IMPORTANCE The evidence for the presence of a diverse and abundant phage population in the host-associated oral microbiome came largely from metagenomic analysis or the observation of virus-like particles within saliva/plaque samples, while the isolation of oral phage and investigation of their interaction with bacterial hosts are limited. Here, we report the isolation of LC001, the first lytic phage targeting oral Schaalia odontolytica. Our study suggested that LC001 may exploit the host bacterium-encoded lytic transglycosylase function to gain access to the receptor, thus facilitating its infection.


Subject(s)
Actinomycetaceae , Bacteriophages , Glycosyltransferases , Actinomycetaceae/enzymology , Actinomycetaceae/virology , Bacteriophage Receptors/metabolism , Bacteriophages/enzymology , Bacteriophages/genetics , Bacteriophages/physiology , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Host Specificity , Humans , Microbiota , Mouth/microbiology , Mouth/virology , Mutation , Peptidoglycan/metabolism , Plankton/virology , Viral Proteins/genetics , Viral Proteins/metabolism
9.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: mdl-35446788

ABSTRACT

Bacteria have evolved to cope with the detrimental effects of ROS using their essential molecular components. Catalase, a heme-containing tetramer protein expressed universally in most aerobic bacteria, plays an indispensable role in scavenging excess hydrogen peroxide (H2O2). Here, through use of wild-type and catalase-deficient mutants, we identified catalase as an endogenous therapeutic target of 400-420 nm blue light. Catalase residing inside bacteria could be effectively inactivated by blue light, subsequently rendering the pathogens extremely vulnerable to H2O2 and H2O2-producing agents. As a result, photoinactivation of catalase and H2O2 synergistically eliminated a wide range of catalase-positive planktonic bacteria and P. aeruginosa inside biofilms. In addition, photoinactivation of catalase was shown to facilitate macrophage defense against intracellular pathogens. The antimicrobial efficacy of catalase photoinactivation was validated using a Pseudomonas aeruginosa-induced mouse abrasion model. Taken together, our findings offer a catalase-targeting phototherapy approach against multidrug-resistant bacterial infections.


Subject(s)
Hydrogen Peroxide , Pseudomonas aeruginosa , Animals , Biofilms , Catalase/genetics , Catalase/metabolism , Catalase/pharmacology , Hydrogen Peroxide/metabolism , Mice , Reactive Oxygen Species/metabolism
10.
Adv Sci (Weinh) ; 9(10): e2104384, 2022 04.
Article in English | MEDLINE | ID: mdl-35119220

ABSTRACT

Microbes have developed their own specific strategies to cope with reactive oxygen species (ROS). Catalase, a heme-containing tetramer expressed in a broad range of aerobic fungi, shows remarkable efficiency in degrading hydrogen peroxide (H2 O2 ) for fungal survival and host invasion. Here, it is demonstrated that catalase inactivation by blue light renders fungal cells highly susceptible to ROS attack. To confirm catalase as a major molecular target of blue light, wild type Candida albicans are systematically compared with a catalase-deficient mutant strain regarding their susceptibility to ROS through 410 nm treatment. Upon testing a wide range of fungal species, it is found that intracellular catalase can be effectively and universally inactivated by 410 nm blue light. It is also found that photoinactivation of catalase in combination with ROS-generating agents is highly effective in total eradication of various fungal species, including multiple Candida auris strains, the causative agent of the global fungal epidemic. In addition, photoinactivation of catalase is shown to facilitate macrophage killing of intracellular Candida albicans. The antifungal efficacy of catalase photoinactivation is further validated using a C. albicans-induced mouse model of skin abrasion. Taken together, the findings offer a novel catalase-photoinactivation approach to address multidrug-resistant Candida infections.


Subject(s)
Candida albicans , Candida , Animals , Candida auris , Catalase/pharmacology , Mice , Reactive Oxygen Species
11.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34992141

ABSTRACT

Saccharibacteria are a group of widespread and genetically diverse ultrasmall bacteria with highly reduced genomes that belong to the Candidate Phyla Radiation. Comparative genomic analyses suggest convergent evolution of key functions enabling the adaptation of environmental Saccharibacteria to mammalian microbiomes. Currently, our understanding of this environment-to-mammal niche transition within Saccharibacteria and their obligate episymbiotic association with host bacteria is limited. Here, we identified a complete arginine deiminase system (ADS), found in further genome streamlined mammal-associated Saccharibacteria but missing in their environmental counterparts, suggesting acquisition during environment-to-mammal niche transition. Using TM7x, the first cultured Saccharibacteria strain from the human oral microbiome and its host bacterium Actinomyces odontolyticus, we experimentally tested the function and impact of the ADS. We demonstrated that by catabolizing arginine and generating adenosine triphosphate, the ADS allows metabolically restrained TM7x to maintain higher viability and infectivity when disassociated from the host bacterium. Furthermore, the ADS protects TM7x and its host bacterium from acid stress, a condition frequently encountered within the human oral cavity due to bacterial metabolism of dietary carbohydrates. Intriguingly, with a restricted host range, TM7x forms obligate associations with Actinomyces spp. lacking the ADS but not those carrying the ADS, suggesting the acquired ADS may also contribute to partner selection for cooperative episymbiosis within a mammalian microbiome. These data present experimental characterization of a mutualistic interaction between TM7x and their host bacteria, and illustrate the benefits of acquiring a novel pathway in the transition of Saccharibacteria to mammalian microbiomes.


Subject(s)
Bacteria/enzymology , Hydrolases/metabolism , Actinomyces , Adaptation, Physiological , Animals , Arginine/metabolism , Bacteria/classification , Bacteria/genetics , Genome, Bacterial , Host Specificity , Humans , Hydrolases/genetics , Mammals/genetics , Microbiota , Mouth/microbiology , Phylogeny , Symbiosis
12.
Adv Sci (Weinh) ; 8(9): 2003136, 2021 05.
Article in English | MEDLINE | ID: mdl-33977045

ABSTRACT

High-sensitivity chemical imaging offers a window to decipher the molecular orchestra inside a living system. Based on vibrational fingerprint signatures, coherent Raman scattering microscopy provides a label-free approach to map biomolecules and drug molecules inside a cell. Yet, by near-infrared (NIR) pulse excitation, the sensitivity is limited to millimolar concentration for endogenous biomolecules. Here, the imaging sensitivity of stimulated Raman scattering (SRS) is significantly boosted for retinoid molecules to 34 micromolar via electronic preresonance in the visible wavelength regime. Retinoids play critical roles in development, immunity, stem cell differentiation, and lipid metabolism. By visible preresonance SRS (VP-SRS) imaging, retinoid distribution in single embryonic neurons and mouse brain tissues is mapped, retinoid storage in chemoresistant pancreatic and ovarian cancers is revealed, and retinoids stored in protein network and lipid droplets of Caenorahbditis elegans are identified. These results demonstrate VP-SRS microscopy as an ultrasensitive label-free chemical imaging tool and collectively open new opportunities of understanding the function of retinoids in biological systems.


Subject(s)
Nonlinear Optical Microscopy/methods , Retinoids/metabolism , Animals , Brain/metabolism , Caenorhabditis elegans , Cell Line, Tumor , Female , Humans , Male , Mice , Models, Animal , Rats , Rats, Sprague-Dawley , Retinoids/chemistry
13.
Sci Adv ; 7(2)2021 01.
Article in English | MEDLINE | ID: mdl-33523971

ABSTRACT

Ergosterol-targeting amphotericin B (AmB) is the first line of defense for life-threatening fungal infections. Two models have been proposed to illustrate AmB assembly in the cell membrane; one is the classical ion channel model in which AmB vertically forms transmembrane tunnel and the other is a recently proposed sterol sponge model where AmB is laterally adsorbed onto the membrane surface. To address this controversy, we use polarization-sensitive stimulated Raman scattering from fingerprint C═C stretching vibration to visualize AmB, ergosterol, and lipid in single fungal cells. Intracellular lipid droplet accumulation in response to AmB treatment is found. AmB is located in membrane and intracellular droplets. In the 16 strains studied, AmB residing inside cell membrane was highly ordered, and its orientation is primarily parallel to phospholipid acyl chains, supporting the ion channel model. Label-free imaging of AmB and chemical contents offers an analytical platform for developing low-toxicity, resistance-refractory antifungal agents.


Subject(s)
Amphotericin B , Candida , Amphotericin B/chemistry , Amphotericin B/pharmacology , Ergosterol/chemistry , Ion Channels/chemistry , Spectrum Analysis, Raman
14.
Photochem Photobiol ; 97(4): 816-825, 2021 07.
Article in English | MEDLINE | ID: mdl-33502005

ABSTRACT

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is increasingly recognized as a major cause of soft tissue and invasive diseases in the elderly and diabetic populations. Antibiotics like penicillin are used with great frequency to treat these infections, although antimicrobial resistance is increasing among GBS strains and underlines a need for alternative methods not reliant on traditional antibiotics. GBS granadaene pigment is related to the hemolysin/cytolysin of GBS, which is critical for the pathogenesis of GBS diseases. Here, we show that photobleaching granadaene dampens the hemolytic activity of GBS. Furthermore, photobleaching of this antioxidant was found to increase GBS susceptibility to killing by reactive oxygen species like hydrogen peroxide. Treatment with light was also shown to affect GBS membrane permeability and contribute to increased susceptibility to the cell membrane-targeting antibiotic daptomycin. Overall, our study demonstrates dual effects of photobleaching on the virulence and antimicrobial susceptibility of GBS and suggests a novel approach for the treatment of GBS infection.


Subject(s)
Streptococcal Infections , Streptococcus agalactiae , Anti-Bacterial Agents/pharmacology , Humans , Photobleaching , Streptococcal Infections/drug therapy , Virulence
15.
Adv Sci (Weinh) ; 7(19): 2001452, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33042757

ABSTRACT

Rapid antimicrobial susceptibility testing (AST) is urgently needed for treating infections with appropriate antibiotics and slowing down the emergence of antibiotic-resistant bacteria. Here, a phenotypic platform that rapidly produces AST results by femtosecond stimulated Raman scattering imaging of deuterium oxide (D2O) metabolism is reported. Metabolic incorporation of D2O into biomass in a single bacterium and the metabolic response to antibiotics are probed in as short as 10 min after culture in 70% D2O medium, the fastest among current technologies. Single-cell metabolism inactivation concentration (SC-MIC) is obtained in less than 2.5 h from colony to results. The SC-MIC results of 37 sets of bacterial isolate samples, which include 8 major bacterial species and 14 different antibiotics often encountered in clinic, are validated by standard minimal inhibitory concentration blindly measured via broth microdilution. Toward clinical translation, stimulated Raman scattering imaging of D2O metabolic incorporation and SC-MIC determination after 1 h antibiotic treatment and 30 min mixture of D2O and antibiotics incubation of bacteria in urine or whole blood is demonstrated.

16.
Adv Sci (Weinh) ; 7(6): 1903117, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32195102

ABSTRACT

Confronted with the rapid evolution and dissemination of antibiotic resistance, there is an urgent need to develop alternative treatment strategies for drug-resistant pathogens. Here, an unconventional approach is presented to restore the susceptibility of methicillin-resistant S. aureus (MRSA) to a broad spectrum of conventional antibiotics via photo-disassembly of functional membrane microdomains. The photo-disassembly of microdomains is based on effective photolysis of staphyloxanthin, the golden carotenoid pigment that gives its name. Upon pulsed laser treatment, cell membranes are found severely disorganized and malfunctioned to defense antibiotics, as unveiled by membrane permeabilization, membrane fluidification, and detachment of membrane protein, PBP2a. Consequently, the photolysis approach increases susceptibility and inhibits development of resistance to a broad spectrum of antibiotics including penicillins, quinolones, tetracyclines, aminoglycosides, lipopeptides, and oxazolidinones. The synergistic therapy, without phototoxicity to the host, is effective in combating MRSA both in vitro and in vivo in a mice skin infection model. Collectively, this endogenous chromophore-targeted phototherapy concept paves a novel platform to revive conventional antibiotics to combat drug-resistant S. aureus infections as well as to screen new lead compounds.

17.
Adv Funct Mater ; 30(49)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33708032

ABSTRACT

The electrochromism of a water-soluble naturally oxidized electrochromic polymer, ox-PPE, is harnessed for rapid and facile bacterial detection, discrimination, and susceptibility testing. The ox-PPE solution shows distinct colorimetric and spectroscopic changes within 30 min when mixed with live bacteria. For the underlying mechanism, it is found that ox-PPE responds to the reducing species (e.g. cysteine and glutathione) released by metabolically active bacteria. This reduction reaction is ubiquitous among various bacterial strains, with a noticeable difference that enables discrimination of Gram-negative and Gram-positive bacterial strains. Combining ox-PPE with antibiotics, methicillin-susceptible and -resistant S. aureus can be differentiated within 2.5 h. Proof-of-concept demonstration of ox-PPE for antimicrobial susceptibility testing is carried out by incubating E. coli with various antibiotics. The obtained minimum inhibition concentrations are consistent with the conventional culture-based methods, but with the procedure time significantly shortened to 3 h.

18.
J Infect Dis ; 221(4): 618-626, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31565732

ABSTRACT

BACKGROUND: Antimicrobial resistance is a significant concern to public health, and there is a pressing need to develop novel antimicrobial therapeutic modalities. METHODS: In this study, we investigated the capacity for quinine hydrochloride (Q-HCL) to enhance the antimicrobial effects of antimicrobial blue light ([aBL] 405 nm wavelength) against multidrug-resistant (MDR) Gram-negative bacteria in vitro and in vivo. RESULTS: Our findings demonstrated the significant improvement in the inactivation of MDR Pseudomonas aeruginosa and Acinetobacter baumannii (planktonic cells and biofilms) when aBL was illuminated during Q-HCL exposure. Furthermore, the addition of Q-HCL significantly potentiated the antimicrobial effects of aBL in a mouse skin abrasion infection model. In addition, combined exposure of aBL and Q-HCL did not result in any significant apoptosis when exposed to uninfected mouse skin. CONCLUSIONS: In conclusion, aBL in combination with Q-HCL may offer a novel approach for the treatment of infections caused by MDR bacteria.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/radiation effects , Anti-Bacterial Agents/therapeutic use , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/radiation effects , Quinine/therapeutic use , Ultraviolet Therapy/methods , Acinetobacter Infections/microbiology , Acinetobacter baumannii/physiology , Animals , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/radiation effects , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/radiation effects , Female , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Plankton/microbiology , Pseudomonas aeruginosa/physiology , Quinine/pharmacology , Skin/injuries , Skin/microbiology , Skin/pathology , Treatment Outcome , Wounds and Injuries/microbiology
19.
Adv Sci (Weinh) ; 6(11): 1900030, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31179216

ABSTRACT

Confronted with the severe situation that the pace of resistance acquisition is faster than the clinical introduction of new antibiotics, health organizations are calling for effective approaches to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, an approach to treat MRSA through photolysis of staphyloxanthin, an antioxidant residing in the microdomain of S. aureus membrane, is reported. This photochemistry process is uncovered through transient absorption imaging and quantitated by absorption spectroscopy, Raman spectroscopy, and mass spectrometry. Photolysis of staphyloxanthin transiently elevates the membrane permeability and renders MRSA highly susceptible to hydrogen peroxide attack. Consequently, staphyloxanthin photolysis by low-level 460 nm light eradicates MRSA synergistically with hydrogen peroxide and other reactive oxygen species. The effectiveness of this synergistic therapy is well validated in MRSA planktonic culture, MRSA-infected macrophage cells, stationary-phase MRSA, persisters, S. aureus biofilms, and two mice wound infection models. Collectively, the work demonstrates that staphyloxanthin photolysis is a new therapeutic platform to treat MRSA infections.

20.
Sci Adv ; 5(5): eaav0561, 2019 05.
Article in English | MEDLINE | ID: mdl-31093524

ABSTRACT

As a stable and accurate biomarker, glycated hemoglobin (HbA1c) is clinically used to diagnose diabetes with a threshold of 6.5% among total hemoglobin (Hb). Current methods such as boronate affinity chromatography involve complex processing of large-volume blood samples. Moreover, these methods cannot measure HbA1c fraction at single-red blood cell (RBC) level, thus unable to separate the contribution from other factors such as RBC lifetime. Here, we demonstrate a spectroscopic transient absorption imaging approach that is able to differentiate HbA1c from Hb on the basis of their distinct excited-state dynamics. HbA1c fraction inside a single RBC is derived quantitatively through phasor analysis. HbA1c fraction distribution of diabetic blood is apparently different from that of healthy blood. A mathematical model is developed to derive the long-term blood glucose concentration. Our technology provides a unique way to study heme modification and to derive clinically important information void of bloodstream glucose fluctuation.


Subject(s)
Diabetes Mellitus, Type 2/blood , Erythrocytes/metabolism , Glycated Hemoglobin/analysis , Microscopy/methods , Single-Cell Analysis/methods , Biomarkers/analysis , Blood Glucose/analysis , Diabetes Mellitus/blood , Heme/analysis , Humans , Kinetics , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...